1
|
Zhang JJ, Ye D, Xu CH, Sun XZ, Zhang WY, Shu HB, Wang SY, Zhao W. Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts. NANO LETTERS 2025. [PMID: 39869108 DOI: 10.1021/acs.nanolett.4c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D Cu2O crystals, including cubic, octahedral, and truncated octahedral structures. With a spatial resolution below 100 nm, SRRF-ECLM precisely delineates the contours of Cu2O crystals, enabling detailed analysis of activity distribution across distinct facets and interfaces. By quantitatively measuring ECL emission intensities from different planes and joint interfaces, we constructed 3D catalytic activity distributions, offering an intuitive and comprehensive perspective of single-catalyst activity. This approach advances single-particle electrochemical analysis and provides valuable insights for designing more efficient catalysts in energy conversion and chemical synthesis applications.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Xi-Zhe Sun
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Wen-Yu Zhang
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hai-Bing Shu
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Si-Ya Wang
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Wei Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
2
|
He H, Hao R. Multiplexed Fluoro-electrochemical Single-Molecule Counting Enabled by SiC Semiconducting Nanofilm. NANO LETTERS 2024; 24:11051-11058. [PMID: 39196295 DOI: 10.1021/acs.nanolett.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A major challenge for ultrasensitive analysis is the high-efficiency determination of different target single molecules in parallel with high accuracy. Herein, we developed a quantitative fluoro-electrochemical imaging approach for direct multiplexed single-molecule counting with a SiC-nanofilm-modified indium tin oxide transparent electrode. The nanofilm could control local pH through proton-coupled electron transfer in a lower potential range and further induce direct electrochemical oxidation of the dye molecules with a higher applied potential. The fluoro-electrochemical responses of immobilized single molecules with different pH values and redox behaviors could thus be distinguished within the same fluorescence channels. This method yields nonamplified direct counting of single molecules, as indicated by excellent linear responses in the picomolar range. The successful distinction of seven different randomly mixed dyes underscores the versatility and efficacy of the proposed method in the highly accurate determination of single dye molecules, paving the way for highly parallel single-molecule detection for diverse applications.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
3
|
Ma C, Zhu Y, Zhang Z, Chen X, Ji Z, Zhang LN, Xu Q. Ratiometric electrochemiluminescence sensing and intracellular imaging of ClO - via resonance energy transfer. Anal Bioanal Chem 2024; 416:4691-4703. [PMID: 38512384 DOI: 10.1007/s00216-024-05236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Electrochemiluminescence resonance energy transfer (ECL-RET) is a versatile signal transduction strategy widely used in the fabrication of chem/biosensors. However, this technique has not yet been applied in visualized imaging analysis of intracellular species due to the insulating nature of the cell membrane. Here, we construct a ratiometric ECL-RET analytical method for hypochlorite ions (ClO-) by ECL luminophore, with a luminol derivative (L-012) as the donor and a fluorescence probe (fluorescein hydrazide) as the acceptor. L-012 can emit a strong blue ECL signal and fluorescein hydrazide has negligible absorbance and fluorescence signal in the absence of ClO-. Thus, the ECL-RET process is turned off at this time. In the presence of ClO-, however, the closed-loop hydrazide structure in fluorescein hydrazide is opened via specific recognition with ClO-, accompanied with intensified absorbance and fluorescence signal. Thanks to the spectral overlap between the ECL spectrum of L-012 and the absorption spectrum of fluorescein, the ECL-RET effect is gradually recovered with the addition of ClO-. Furthermore, the ECL-RET system has been successfully applied to image intracellular ClO-. Although the insulating nature of the cell itself can generate a shadow ECL pattern in the cellular region, extracellular ECL emission penetrates the cell membrane and excites intracellular fluorescein generated by the reactions between fluorescein hydrazide and ClO-. The cell imaging strategy via ECL-RET circumvents the blocking of the cell membrane and enables assays of intracellular species. The importance of the ECL-RET platform lies in calibrating the fluctuation from the external environment and improving the selectivity by using fluorescent probes. Therefore, this ratiometric ECL sensor has shown broad application prospects in the identification of targets in clinical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| | - Yujing Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Xuan Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Lu-Nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| |
Collapse
|
4
|
Knežević S, Totoricaguena-Gorriño J, Gajjala RKR, Hermenegildo B, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Méndez S, Sojic N, Del Campo FJ. Enhanced Electrochemiluminescence at the Gas/Liquid Interface of Bubbles Propelled into Solution. J Am Chem Soc 2024; 146:22724-22735. [PMID: 39090816 DOI: 10.1021/jacs.4c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Electrochemiluminescence (ECL) is typically confined to a micrometric region from the electrode surface. This study demonstrates that ECL emission can extend up to several millimeters away from the electrode employing electrogenerated chlorine bubbles. The mechanism behind this bubble-enhanced ECL was investigated using an Au microelectrode in chloride-containing and chloride-free electrolyte solutions. We discovered that ECL emission at the gas/solution interface is driven by two parallel effects. First, the bubble corona effect facilitates the generation of hydroxyl radicals capable of oxidizing luminol while the bubble is attached to the surface. Second, hypochlorite generated from chlorine sustains luminol emission for over 200 s and extends the emission range up to 5 mm into the solution, following bubble detachment. The new approach can increase the emission intensity of luminol-based assays 5-fold compared to the conventional method. This is demonstrated through a glucose bioassay, using a midrange mobile phone camera for detection. These findings significantly expand the potential applications of ECL by extending its effective range in time and space.
Collapse
Affiliation(s)
- Sara Knežević
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Joseba Totoricaguena-Gorriño
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Rajendra Kumar Reddy Gajjala
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- Grupo de Química Macromolecular, Universidad del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya 48940, Spain
| | - José Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- Grupo de Química Macromolecular, Universidad del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya 48940, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Francisco Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
5
|
Knežević S, Han D, Liu B, Jiang D, Sojic N. Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2024; 63:e202407588. [PMID: 38742673 DOI: 10.1002/anie.202407588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.
Collapse
Affiliation(s)
- Sara Knežević
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607, Pessac, France
| | - Dongni Han
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Baohong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607, Pessac, France
| |
Collapse
|
6
|
Ben Trad F, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Shadow electrochemiluminescence imaging of giant liposomes opening at polarized electrodes. Analyst 2024; 149:3317-3324. [PMID: 38742381 DOI: 10.1039/d4an00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In this work, the release of giant liposome (∼100 μm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400 Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
7
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
8
|
Hu S, Xu L, Wu Y, Qin D, Deng B. Novel immunosensor based on electrochemiluminescence inner filter effect and static quenching between fibrillary Ag-MOGs and SiO 2@PANI@AuNPs for enabling the sensitive detection of neuron-specific enolase. Mikrochim Acta 2024; 191:204. [PMID: 38492076 DOI: 10.1007/s00604-024-06294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Metal-organic gels (MOGs) are unique supramolecular gels that are convenient to synthesize. In this work, a cathodic electrochemiluminescence (ECL) system based on Ag-MOGs as a luminophore and K2S2O8 as a co-reactor was developed. The ECL spectrum of the Ag-MOGs overlapped significantly with the strong UV-Vis spectrum of the SiO2@PANI@AuNPs, which effectively quenched the ECL luminescence of the Ag-MOGs. Relying on the inner filter effect between Ag-MOGs and SiO2@PANI@AuNPs, a novel ECL-IFE immunosensor was developed for the detection of neuron-specific enolase (NSE). Under optimal conditions, the ECL signal of the immunosensor displayed excellent linearity over the NSE concentration range of 10 fg/mL-100 ng/mL. The limit of detection (LOD) was 2.6 fg/mL (S/N = 3) with a correlation coefficient R2 of 0.9975. The ECL immunosensor also exhibited excellent stability and reproducibility for the detection of NSE. The results reported provide a feasible concept for the development analytical methods for the detection of other clinically relevant biomarkers.
Collapse
Affiliation(s)
- Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, Guangxi, China.
| |
Collapse
|
9
|
Xu Y, Huang X, Wang Y, Qu W, Guo W, Su B, Dai Z. Controllable and Low-Loss Electrochemiluminescence Waveguide Supported by a Micropipette Electrode. J Am Chem Soc 2024; 146:5423-5432. [PMID: 38354221 DOI: 10.1021/jacs.3c12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
One-dimensional molecular crystal waveguide (MCW) can transmit self-generated electrochemiluminescence (ECL), but heavy optical loss occurs because of the small difference in the refractive index between the crystal and its surroundings. Herein, we report a micropipette electrode-supported MCW (MPE/MCW) for precisely controlling the far-field transmission of ECL in air with a low optical loss. ECL is generated from one terminal of the MCW positioned inside the MPE, which is transmitted along the MCW to the other terminal in air. In comparison with conventional waveguides on solid substrates or in solutions, the MPE/MCW is propitious to the total internal reflection of light at the MCW/air interface, thus confining the ECL efficiently in MCW and improving the waveguide performance with an extremely low-loss coefficient of 4.49 × 10-3 dB μm-1. Moreover, by regulation of the gas atmosphere, active and passive waveguides can be resolved simultaneously inside MPE and in air. This MPE/MCW offers a unique advantage of spatially controlling and separating ECL signal readout from its generation, thus holding great promise in biosensing without or with less electrical/chemical disturbance.
Collapse
Affiliation(s)
- Yingying Xu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yulan Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Bin Su
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
10
|
Descamps J, Zhao Y, Goudeau B, Manojlovic D, Loget G, Sojic N. Infrared photoinduced electrochemiluminescence microscopy of single cells. Chem Sci 2024; 15:2055-2061. [PMID: 38332811 PMCID: PMC10848722 DOI: 10.1039/d3sc05983a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024] Open
Abstract
Electrochemiluminescence (ECL) is evolving rapidly from a purely analytical technique into a powerful microscopy. Herein, we report the imaging of single cells by photoinduced ECL (PECL; λem = 620 nm) stimulated by an incident near-infrared light (λexc = 1050 nm). The cells were grown on a metal-insulator-semiconductor (MIS) n-Si/SiOx/Ir photoanode that exhibited stable and bright PECL emission. The large anti-Stokes shift allowed for the recording of well-resolved images of cells with high sensitivity. PECL microscopy is demonstrated at a remarkably low onset potential of 0.8 V; this contrasts with classic ECL, which is blind at this potential. Two imaging modes are reported: (i) photoinduced positive ECL (PECL+), showing the cell membranes labeled with the [Ru(bpy)3]2+ complex; and (ii) photoinduced shadow label-free ECL (PECL-) of cell morphology, with the luminophore in the solution. Finally, by adding a new dimension with the near-infrared light stimulus, PECL microscopy should find promising applications to image and study single photoactive nanoparticles and biological entities.
Collapse
Affiliation(s)
- Julie Descamps
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| | - Yiran Zhao
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
| | - Bertrand Goudeau
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| | | | - Gabriel Loget
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH Jülich 52425 Germany
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| |
Collapse
|
11
|
Han D, Jiang D, Valenti G, Paolucci F, Kanoufi F, Chaumet PC, Fang D, Sojic N. Optics Determines the Electrochemiluminescence Signal of Bead-Based Immunoassays. ACS Sens 2023; 8:4782-4791. [PMID: 37978286 DOI: 10.1021/acssensors.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Electrochemiluminescence (ECL) is an optical readout technique that is successfully applied for the detection of biomarkers in body fluids using microbead-based immunoassays. This technology is of utmost importance for in vitro diagnostics and thus a very active research area but is mainly focused on the quest for new dyes and coreactants, whereas the investigation of the ECL optics is extremely scarce. Herein, we report the 3D imaging of the ECL signals recorded at single microbeads decorated with the ECL labels in the sandwich immunoassay format. We show that the optical effects due to the light propagation through the bead determine mainly the spatial distribution of the recorded ECL signals. Indeed, the optical simulations based on the discrete dipole approximation compute rigorously the electromagnetic scattering of the ECL emission by the microbead and allow for reconstructing the spatial map of ECL emission. Thus, it provides a global description of the ECL chemical reactivity and the associated optics. The outcomes of this 3D imaging approach complemented by the optical modeling provide insight into the ECL optics and the unique ECL chemical mechanism operating on bead-based immunoassays. Therefore, it opens new directions for mechanistic investigations, ultrasensitive ECL bioassays, and imaging.
Collapse
Affiliation(s)
- Dongni Han
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP,Univ. Bordeaux, 33607 Pessac, France
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy
| | | | - Patrick C Chaumet
- Institut Fresnel, Aix Marseille Univ, CNRS, Centrale Marseille, 13013 Marseille, France
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Neso Sojic
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP,Univ. Bordeaux, 33607 Pessac, France
| |
Collapse
|
12
|
Yan Y, Zhou P, Ding L, Hu W, Chen W, Su B. T Cell Antigen Recognition and Discrimination by Electrochemiluminescence Imaging. Angew Chem Int Ed Engl 2023; 62:e202314588. [PMID: 37903724 DOI: 10.1002/anie.202314588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Adoptive T lymphocyte (T cell) transfer and tumour-specific peptide vaccines are innovative cancer therapies. An accurate assessment of the specific reactivity of T cell receptors (TCRs) to tumour antigens is required because of the high heterogeneity of tumour cells and the immunosuppressive tumour microenvironment. In this study, we report a label-free electrochemiluminescence (ECL) imaging approach for recognising and discriminating between TCRs and tumour-specific antigens by imaging the immune synapses of T cells. Various T cell stimuli, including agonistic antibodies, auxiliary molecules, and tumour-specific antigens, were modified on the electrode's surface to allow for their interaction with T cells bearing different TCRs. The formation of immune synapses activated by specific stimuli produced a negative (shadow) ECL image, from which T cell antigen recognition and discrimination were evaluated by analysing the spreading area and the recognition intensity of T cells. This approach provides an easy way to assess TCR-antigen specificity and screen both of them for immunotherapies.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hu
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Education Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310012, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Zhang Z, Dong J, Yang Y, Zhou Y, Chen Y, Xu Y, Feng J. Direct probing of single-molecule chemiluminescent reaction dynamics under catalytic conditions in solution. Nat Commun 2023; 14:7993. [PMID: 38042861 PMCID: PMC10693624 DOI: 10.1038/s41467-023-43640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
Chemical reaction kinetics can be evaluated by probing dynamic changes of chemical substrates or physical phenomena accompanied during the reaction process. Chemiluminescence, a light emitting exoenergetic process, involves random reaction positions and kinetics in solution that are typically characterized by ensemble measurements with nonnegligible average effects. Chemiluminescent reaction dynamics at the single-molecule level remains elusive. Here we report direct imaging of single-molecule chemiluminescent reactions in solution and probing of their reaction dynamics under catalytic conditions. Double-substrate Michaelis-Menten type of catalytic kinetics is found to govern the single-molecule reaction dynamics in solution, and a heterogeneity is found among different catalyst particles and different catalytic sites on a single particle. We further show that single-molecule chemiluminescence imaging can be used to evaluate the thermodynamics of the catalytic system, resolving activation energy at the single-particle level. Our work provides fundamental insights into chemiluminescent reactions and offers an efficient approach for evaluating catalysts.
Collapse
Affiliation(s)
- Ziqing Zhang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yibo Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China.
- Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, 311121, Hangzhou, China.
| |
Collapse
|
14
|
Yu S, Hu X, Pan J, Lei J, Ju H. Nanoconfined Cathodic Electrochemiluminescence for Self-Sensitized Bioimaging of Membrane Protein. Anal Chem 2023; 95:16593-16599. [PMID: 37902983 DOI: 10.1021/acs.analchem.3c02726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Self-enhanced electrochemiluminescence (ECL) can be achieved via the confinement of coreactants and ECL emitters in a single nanostructure. This strategy has been used for the design of anodic ECL systems with amine compounds as coreactants. In this work, a novel confinement system was proposed by codoping positively charged ECL emitter tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) and negatively charged coreactant peroxydisulfate (S2O82-) in silica nanoparticles. The codoping process could be performed by introducing S2O82- in cationic poly(diallyldimethylammonium chloride) (PDDA) to form PDDA@S2O82- and then encapsulating it and Ru(bpy)32+ in the Triton X-100 vesicle followed by the hydrolysis of tetraethyl ortosilicate, surface modification, and demulsification. The obtained RuSSNs exhibited good homogeneity, excellent monodispersity, acceptable biocompatibility, and 2.9-fold stronger ECL emission than Ru(bpy)32+-doped silica nanoparticles at an equal amount of nanoparticles in the presence of 0.1 M K2S2O8. Thus, an in situ self-sensitized cathodic ECL imaging method was designed for the monitoring of glycoprotein on living cell membranes. This work provides a new way for the modification, enhancement, and application of nano-ECL emitters in biological analysis.
Collapse
Affiliation(s)
- Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiangfu Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
15
|
Han D, Fang D, Valenti G, Paolucci F, Kanoufi F, Jiang D, Sojic N. Dynamic Mapping of Electrochemiluminescence Reactivity in Space: Application to Bead-Based Assays. Anal Chem 2023; 95:15700-15706. [PMID: 37815364 DOI: 10.1021/acs.analchem.3c02960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
As an electrochemical technique offering an optical readout, electrochemiluminescence (ECL) evolved recently into a powerful microscopy technique with the visualization of a wide range of microscopic entities. However, the dynamic imaging of transient ECL events did not receive intensive attention due to the limited number of electrogenerated photons. Here, the reaction kinetics of the model ECL bioassay system was revealed by dynamic imaging of single [Ru(bpy)3]2+-functionalized beads in the presence of the efficient tripropylamine coreactant. The time profile behavior of ECL emission, the variations of the ECL layer thickness, and the position of maximum ECL intensity over time were investigated, which were not achieved by static imaging in previous studies. Moreover, the dynamics of the ECL emission were confronted with the simulation. The reported dynamic ECL imaging allows the investigation of the ECL kinetics and mechanisms operating in bioassays and cell microscopy.
Collapse
Affiliation(s)
- Dongni Han
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, Pessac 33607, France
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, Bologna 40126, Italy
| | | | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Neso Sojic
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, Pessac 33607, France
| |
Collapse
|
16
|
Descamps J, Zhao Y, Le-Pouliquen J, Goudeau B, Garrigue P, Tavernier K, Léger Y, Loget G, Sojic N. Local reactivity of metal-insulator-semiconductor photoanodes imaged by photoinduced electrochemiluminescence microscopy. Chem Commun (Camb) 2023; 59:12262-12265. [PMID: 37753612 DOI: 10.1039/d3cc03702a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Localized photoinduced electrochemiluminescence (PECL) is studied on photoanodes composed of Ir microbands deposited on n-Si/SiOx. We demonstrate that PECL microscopy precisely imaged the hole-driven heterogeneous photoelectrochemical reactivity. The method is promising for elucidating the local activity of photoelectrodes that are employed in solar energy conversion.
Collapse
Affiliation(s)
- Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France.
| | - Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes F-35000, France.
| | - Julie Le-Pouliquen
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, F-35000, Rennes, France
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France.
| | - Patrick Garrigue
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France.
| | - Karine Tavernier
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, F-35000, Rennes, France
| | - Yoan Léger
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON-UMR 6082, F-35000, Rennes, France
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes F-35000, France.
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France.
| |
Collapse
|
17
|
Sornambigai M, Bouffier L, Sojic N, Kumar SS. Tris(2,2'-bipyridyl)ruthenium (II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. Anal Bioanal Chem 2023; 415:5875-5898. [PMID: 37507465 DOI: 10.1007/s00216-023-04876-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In recent years, electrochemiluminescence (ECL) has received enormous attention and has emerged as one of the most successful tools in the field of analytical science. Compared with homogeneous ECL, the heterogeneous (or solid-state) ECL has enhanced the rate of the electron transfer kinetics and offers rapid response time, which is highly beneficial in point-of-care and clinical applications. In ECL, the luminophore is the key element, which dictates the overall performance of the ECL-based sensors in various analytical applications. Tris(2,2'-bipyridyl)ruthenium (II) complex, Ru(bpy)32+, is a coordination compound, which is the gold-standard luminophore in ECL. It has played a key role in translating ECL from a "laboratory curiosity" to a commercial analytical instrument for diagnosis. The aim of the present review is to provide the principles of ECL and classical reaction mechanisms-particularly involving the heterogeneous Ru(bpy)32+/co-reactant ECL systems, as well as the fabrication methods and its importance over solution-phase Ru(bpy)32+ ECL. Then, we discussed the emerging technology in solid-state Ru(bpy)32+ ECL-sensing platforms and their recent potential analytical applications such as in immunoassay sensors, DNA sensors, aptasensors, bio-imaging, latent fingerprint detection, point-of-care testing, and detection of non-biomolecules. Finally, we also briefly cover the recent advances in solid-state Ru(bpy)32+ ECL coupled with the hyphenated techniques.
Collapse
Affiliation(s)
- Mathavan Sornambigai
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Laurent Bouffier
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France.
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, Karaikudi, Tamil Nadu, 630003, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Zhao X, Li Y, Cui Y, Saqib M, Zhang X, Hao R, Zheng Z. Spatiotemporally and Chemically Resolved Imaging of Electrocatalytic Oxygen Evolution on Single Nanoplates of Cobalt-Layered Hydroxide. J Am Chem Soc 2023; 145:20897-20906. [PMID: 37721427 DOI: 10.1021/jacs.3c06062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Transition metal-layered hydroxides have been extensively studied in order to address the key challenge of slow kinetics of the oxygen evolution reaction (OER). However, how the catalytically active sites are evolved and the corresponding heterogeneous structure-property relationship remain unclear. Herein, using cobalt-layered hydroxide as a representative catalyst, we report a strategy for the comprehensive in situ investigation of the electrocatalytic OER process at the single electrocatalyst level using combined electrochemiluminescence (ECL) and vis-absorption microscopy. The stepwise heterogeneous electrocatalytic responses of single-cobalt hydroxide nanoplates are unveiled with ECL imaging, and the corresponding valence state changes are revealed by vis-absorption imaging. The correlated in situ and ex situ multimode analyses indicate that, during the oxidation process, the Co2+ cations in the tetrahedral sites (CoTd2+) turned into CoTd3+ and even the highly unstable CoTd4+, assisted by the interlayer water in a metastable CoOOH·xH2O phase. Crucially, the CoTd4+ sites are mainly distributed in the inner part of the nanoplates and show superior electrocatalytic properties. The correlative single-particle imaging approach for electrocatalytic process analysis with high spatiotemporal and chemical resolution enables in-depth mechanistic insights to be generated and, in turn, will benefit the rational design of electrocatalysts with enhanced performance.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yanyan Li
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, 518055 Shenzhen, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, China
- Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
19
|
Xing Z, Gou X, Jiang LP, Zhu JJ, Ma C. An In Situ Investigation of the Protein Corona Formation Kinetics of Single Nanomedicine Carriers by Self-Regulated Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202308950. [PMID: 37553293 DOI: 10.1002/anie.202308950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)3 3+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle "cores" before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)3 3+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.
Collapse
Affiliation(s)
- Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| |
Collapse
|
20
|
Gou X, Zhang Y, Xing Z, Ma C, Mao C, Zhu JJ. Site-selective heat boosting electrochemiluminescence for single cell imaging. Chem Sci 2023; 14:9074-9085. [PMID: 37655029 PMCID: PMC10466305 DOI: 10.1039/d3sc02298f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
In operando visualization of local electrochemical reactions provides mechanical insights into the dynamic transport of interfacial charge and reactant/product. Electrochemiluminescence is a crossover technique that quantitatively determines Faraday current and mass transport in a straightforward manner. However, the sensitivity is hindered by the low collision efficiency of radicals and side reactions at high voltage. Here, we report a site-selective heat boosting electrochemiluminescence microscopy. By generating a micron-scale heat point in situ at the electrode-solution interface, we achieved an enhancement of luminescence intensity up to 63 times, along with an advance of 0.2 V in applied voltage. Experimental results and finite element simulation demonstrate that the fundamental reasons are accelerated reaction rate and thermal convection via a photothermal effect. The concentrated electrochemiluminescence not only boosts the contrast of single cells by 20.54 times but also enables the site-selective cell-by-cell analysis of the heterogeneous membrane protein abundance. This electrochemical visualization method has great potential in the highly sensitive and selective analysis of local electron transfer events.
Collapse
Affiliation(s)
- Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yiwen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- School of Chemistry and Chemical Engineering, Anhui University Hefei 230601 P. R. China
| | - Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Changjie Mao
- School of Chemistry and Chemical Engineering, Anhui University Hefei 230601 P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
21
|
Zhao Y, Descamps J, Al Hoda Al Bast N, Duque M, Esteve J, Sepulveda B, Loget G, Sojic N. All-Optical Electrochemiluminescence. J Am Chem Soc 2023; 145:17420-17426. [PMID: 37498003 DOI: 10.1021/jacs.3c05856] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Electrochemiluminescence (ECL) is widely employed for medical diagnosis and imaging. Despite its remarkable analytical performances, the technique remains intrinsically limited by the essential need for an external power supply and electrical wires for electrode connections. Here, we report an electrically autonomous solution leading to a paradigm change by designing a fully integrated all-optical wireless monolithic photoelectrochemical device based on a nanostructured Si photovoltaic junction modified with catalytic coatings. Under illumination with light ranging from visible to near-infrared, photogenerated holes induce the oxidation of the ECL reagents and thus the emission of visible ECL photons. The blue ECL emission is easily viewed with naked eyes and recorded with a smartphone. A new light emission scheme is thus introduced where the ECL emission energy (2.82 eV) is higher than the excitation energy (1.18 eV) via an intermediate electrochemical process. In addition, the mapping of the photoelectrochemical activity by optical microscopy reveals the minority carrier interfacial transfer mechanism at the nanoscale. This breakthrough provides an all-optical strategy for generalizing ECL without the need for electrochemical setups, electrodes, wiring constraints, and specific electrochemical knowledge. This simplest ECL configuration reported so far opens new opportunities to develop imaging and wireless bioanalytical systems such as portable point-of-care sensing devices.
Collapse
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes 35000, France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Nour Al Hoda Al Bast
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona 08193, Spain
| | - Marcos Duque
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona 08193, Spain
| | - Jaume Esteve
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona 08193, Spain
| | - Borja Sepulveda
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Barcelona 08193, Spain
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes 35000, France
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| |
Collapse
|
22
|
Chen X, Liu Y, Wang B, Liu X, Lu C. Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Knežević S, Kerr E, Goudeau B, Valenti G, Paolucci F, Francis PS, Kanoufi F, Sojic N. Bimodal Electrochemiluminescence Microscopy of Single Cells. Anal Chem 2023; 95:7372-7378. [PMID: 37098243 DOI: 10.1021/acs.analchem.3c00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Electrochemiluminescence (ECL) microscopy is an emerging technique with new applications such as imaging of single entities and cells. Herein, we have developed a bimodal and bicolor approach to record both positive ECL (PECL: light-emitting object on dark background) and shadow label-free ECL (SECL: nonemissive object shadowing the background luminescence) images of single cells. This bimodal approach is the result of the simultaneous emissions of [Ru(bpy)3]2+ used to label the cellular membrane (PECL) and [Ir(sppy)3]3- dissolved in solution (SECL). By spectrally resolving the ECL emission wavelengths, we recorded the images of the same cells in both PECL and SECL modes using the [Ru(bpy)3]2+ (λmax = 620 nm) and [Ir(sppy)3]3- (λmax = 515 nm) luminescence, respectively. PECL shows the distribution of the [Ru(bpy)3]2+ labels attached to the cellular membrane, whereas SECL reflects the local diffusional hindrance of the ECL reagents by each cell. The high sensitivity and surface-confined features of the reported approach are demonstrated by imaging cell-cell contacts during the mitosis process. Furthermore, the comparison of PECL and SECL images demonstrates the differential diffusion of tri-n-propylamine and [Ir(sppy)3]3- through the permeabilized cell membranes. Consequently, this dual approach enables the imaging of the morphology of the cell adhering on the surface and can significantly contribute to multimodal ECL imaging and bioassays with different luminescent systems.
Collapse
Affiliation(s)
- Sara Knežević
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, 33607 Pessac, France
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Bertrand Goudeau
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, 33607 Pessac, France
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | | | - Neso Sojic
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, 33607 Pessac, France
| |
Collapse
|
24
|
Zhao P, Zhu W, Zheng M, Feng J. Deep Learning Enhanced Electrochemiluminescence Microscopy. Anal Chem 2023; 95:4803-4809. [PMID: 36867104 DOI: 10.1021/acs.analchem.3c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Limited by the efficiency of electrochemiluminescence, tens of seconds of exposure time are typically required to get a high-quality image. Image enhancement of short exposure time images to obtain a well-defined electrochemiluminescence image can meet the needs of high-throughput or dynamic imaging. Here, we propose deep enhanced ECL microscopy (DEECL), a general strategy that utilizes artificial neural networks to reconstruct electrochemiluminescence images with millisecond exposure times to have similar quality as high-quality electrochemiluminescence images with second-long exposure time. Electrochemiluminescence imaging of fixed cells demonstrates that DEECL allows improvement of the imaging efficiency by 1 to 2 orders than usual. This approach is further used for a data-intensive analysis application, cell classification, achieving an accuracy of 85% with ECL data at an exposure time of 50 ms. We anticipate that the computationally enhanced electrochemiluminescence microscopy will enable fast and information-rich imaging and prove useful for understanding dynamic chemical and biological processes.
Collapse
Affiliation(s)
- Pinlong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenxin Zhu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiandong Feng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Hu X, Yu S, Wang C, Zhang X, Pan J, Ju H. Electrochemiluminescence Imaging at a Single Nanoparticle Scale to Elucidate Diffusion-Accelerated Charge Transfer and Monitor Cell Permeability. Anal Chem 2023; 95:4496-4502. [PMID: 36821703 DOI: 10.1021/acs.analchem.2c05250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Accelerating the charge transfer between electroactive species and the electrode is always a hot topic. Here, we report a finding of Ru(bpy)33+ diffusion-induced acceleration of charge transfer from Ru(bpy)32+-doped silica nanoparticles (RDSNs) to the electrode via electrochemiluminescence (ECL) imaging at a single nanoparticle scale. Ru(bpy)32+ in the electrolyte can act as an enhancer of RDSN ECL emission in the presence of coreactant tripropylamine, which amplifies the RDSN ECL by 478 times at 10 μM free Ru(bpy)32+. According to percolation theory, the diffusion of electro-generated Ru(bpy)33+ near a single RDSN brings much quicker charge transfer to the electrode than electron hopping in RDSN, which is demonstrated by spatial and temporal interaction imaging of the RDSN and the Ru(III) diffusion layer. Taking advantage of this new mechanism, a real-time ECL imaging method has been constructed to monitor the rapid change of cell permeability during surfactant treatment.
Collapse
Affiliation(s)
- Xiangfu Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
26
|
Qin X, Gao J, Jin HJ, Li ZQ, Xia XH. Closed Bipolar Electrode Array for Optical Reporting Reaction-Coupled Electrochemical Sensing and Imaging. Chemistry 2023; 29:e202202687. [PMID: 36316589 DOI: 10.1002/chem.202202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
This review centers on a closed bipolar electrode (BPE) array using an electro-fluorochromism (EFC) or electro-chemiluminescence (ECL) reaction as the reporting reaction. Electrochemical signals at one pole of the closed BPE array can be transduced into the EFC or ECL signals at the opposite pole. Therefore, the current signal of a redox reaction can be easily detected and imaged by monitoring the luminescence signal. Recent developments in closed BPE array-based EFC and ECL sensing and imaging are summarized and discussed in detail. Finally, we consider the challenges and opportunities for improving the spatial resolution of closed BPE array-based electrochemical imaging, and emphasize the important application of this technique to the imaging of cellular activities at the single-cell level.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jiao Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Jiang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Zhu W, Dong J, Ruan G, Zhou Y, Feng J. Quantitative Single-Molecule Electrochemiluminescence Bioassay. Angew Chem Int Ed Engl 2023; 62:e202214419. [PMID: 36504245 DOI: 10.1002/anie.202214419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
A single-molecule electrochemiluminescence bioassay is developed here which allows imaging and direct quantification of single biomolecules. Imaging single biomolecules is realized by localizing the electrochemiluminescence events of the labeled molecules. Such an imaging system allows mapping the spatial distribution of biomolecules with electrochemiluminescence and contains quantitative single-molecule insights. We further quantify biomolecules by spatiotemporally merging the repeated reactions at one molecule site and then counting the clustered molecules. The proposed single-molecule electrochemiluminescence bioassay is used to detect carcinoembryonic antigen, showing a limit of detection of 67 attomole concentration which is 10 000 times better than conventional electrochemiluminescence bioassays. This spatial resolution and sensitivity enable single-molecule electrochemiluminescence bioassay a new toolbox for both specific bioimaging and ultrasensitive quantitative analysis.
Collapse
Affiliation(s)
- Wenxin Zhu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guoxiang Ruan
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311121, China
| |
Collapse
|
28
|
Huang X, Li B, Lu Y, Liu Y, Wang S, Sojic N, Jiang D, Liu B. Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202215078. [PMID: 36478505 DOI: 10.1002/anie.202215078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoconfinement in mesoporous nanoarchitectures could dramatically change molecular transport and reaction kinetics during electrochemical process. A molecular-level understanding of nanoconfinement and mass transport is critical for the applications, but a proper route to study it is lacking. Herein, we develop a single nanoreactor electrochemiluminescence (SNECL) microscopy based on Ru(bpy)3 2+ -loaded mesoporous silica nanoparticle to directly visualize in situ nanoconfinement-enhanced electrochemical reactions at the single molecule level. Meanwhile, mass transport capability of single nanoreactor, reflected as long decay time and recovery ability, is monitored and simulated with a high spatial resolution. The nanoconfinement effects in our system also enable imaging single proteins on cellular membrane. Our SNECL approach may pave the way to decipher the nanoconfinement effects during electrochemical process, and build bridges between mesoporous nanoarchitectures and potential electrochemical applications.
Collapse
Affiliation(s)
- Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
Ma C, Zhang Z, Tan T, Zhu JJ. Recent Progress in Plasmonic based Electrochemiluminescence Biosensors: A Review. BIOSENSORS 2023; 13:bios13020200. [PMID: 36831966 PMCID: PMC9953926 DOI: 10.3390/bios13020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 05/25/2023]
Abstract
Electrochemiluminescence (ECL) analysis has become a powerful tool in recent biomarker detection and clinic diagnosis due to its high sensitivity and broad linear range. To improve the analytical performance of ECL biosensors, various advanced nanomaterials have been introduced to regulate the ECL signal such as graphene, gold nanomaterials, and quantum dots. Among these nanomaterials, some plasmonic nanostructures play important roles in the fabrication of ECL biosensors. The plasmon effect for the ECL signal includes ECL quenching by resonant energy transfer, ECL enhancement by surface plasmon resonance enhancement, and a change in the polarized angle of ECL emission. The influence can be regulated by the distance between ECL emitters and plasmonic materials, and the characteristics of polarization angle-dependent surface plasmon coupling. This paper outlines the recent advances of plasmonic based ECL biosensors involving various plasmonic materials including noble metals and semiconductor nanomaterials. The detection targets in these biosensors range from small molecules, proteins, nucleic acids, and cells thanks to the plasmonic effect. In addition to ECL biosensors, ECL microscopy analysis with plasmonic materials is also highlighted because of the enhanced ECL image quality by the plasmonic effect. Finally, the future opportunities and challenges are discussed if more plasmonic effects are introduced into the ECL realm.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tingting Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
31
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
32
|
Ma C, Xing Z, Gou X, Jiang LP, Zhu JJ. A temperature-tuned electrochemiluminescence layer for reversibly imaging cell topography. Chem Sci 2022; 13:13938-13947. [PMID: 36544730 PMCID: PMC9710227 DOI: 10.1039/d2sc04944a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Investigating electrochemiluminescence (ECL) scenarios under different temperatures is important to expand its imaging scope near an electrode surface. Here, we develop a temperature-tuned ECL layer by recording the evolution of shadow regions of adherent cells. Finite element simulation and experimental results demonstrate that the thickness of the ECL layer (TEL) is reversibly regulated by electrode temperature (T e), so that single cell topography at different heights is imaged. The TEL in two ECL routes shows different regulation ranges with elevated T e, thus providing a flexible approach to adjust the imaging scope within specific heights. In addition, a heated electrode significantly improves the image quality of cell adhesion in heterogeneous electrochemical rate-determined situations. Thus, the contrast in cell regions shows a reversible response to T e. This work provides a new approach to regulate the TEL and is promising for monitoring transient heat generation from biological entities.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou UniversityYangzhou 225002P. R. China,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| |
Collapse
|