1
|
Morciano G, Pinton P. Modulation of mitochondrial permeability transition pores in reperfusion injury: Mechanisms and therapeutic approaches. Eur J Clin Invest 2025; 55:e14331. [PMID: 39387139 PMCID: PMC11628652 DOI: 10.1111/eci.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Ischemia/reperfusion injury is attracting continuous interest in science for two reasons: because it affects several clinical conditions and because it has been identified, albeit in broad terms, the molecular entity becoming activated by the reperfusion damage paradoxes. Indeed, calcium, oxygen-dependent oxidative stress and pH would activate conformational changes in the mitochondrial cristae embedded F1/FO ATP synthase, allowing the formation of pores in the inner mitochondrial membrane thus increasing its permeability. This is a key determinant for mitochondrial stress, cell death and tissue dysfunction. Targeting each of these factors has never contributed to improved clinical outcome of the patients affected by reperfusion damage; now, the focus on the PTP opening could represent the closest target to solve this pathway made by extensive cell death when the tissues become revascularized. In this review, we summarized last knowledge about the structure, the modulation and the therapeutic targeting of the PTP, focusing on ATP synthase and cardiac ischemia/reperfusion.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Maria Cecilia Hospital, GVM Care & ResearchCotignolaItaly
| | - Paolo Pinton
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Maria Cecilia Hospital, GVM Care & ResearchCotignolaItaly
| |
Collapse
|
2
|
Bei J, Sun Z, Fu R, Huang X, Huang J, Luo Y, Li Y, Chen Y, Wei Z. PPIH Expression Correlates with Tumor Aggressiveness and Immune Dysregulation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2453-2470. [PMID: 39679070 PMCID: PMC11646373 DOI: 10.2147/jhc.s492420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Hepatocellular Carcinoma (HCC) features a complex pathophysiology and unpredictable immunosuppressive microenvironment, which limit the effectiveness of traditional therapies and lead to poor patient outcomes. Understanding the immune characteristics of HCC is essential for elucidating the immune microenvironment and developing more effective treatments. This study investigates the role of Peptidyl-prolyl isomerase H (PPIH) in HCC by analyzing its expression, prognosis, methylation levels, and relationship with immune cell infiltration. Methods We utilized bulk sequencing and clinical data from UCSC Xena and the GTEx database for preprocessing and subsequent differential expression analysis of PPIH in tumor and adjacent normal tissues, evaluating prognostic parameters like overall survival and disease-free interval between low and high PPIH expression groups. Immune infiltration was analyzed via CIBERSORT and ssGSEA, while DNA methylation and somatic mutation analyses were performed using MExpress and "maftools", respectively, alongside in vitro and in vivo experiments to assess PPIH's functional roles. Results Our findings indicated that PPIH is significantly upregulated in various cancer types, correlating with poor patient prognosis, increased somatic mutations, and altered gene methylation patterns. High PPIH levels were linked to enhanced T regulatory (Treg) cell infiltration and a decline in Th17 cell populations, impacting vital pathways related to DNA damage repair and tumor proliferation. Furthermore, PPIH knockdown in vitro led to reduced cell viability, proliferation, and invasion while promoting apoptosis. In vivo, PPIH knockdown repressed tumor growth and modified the immune microenvironment by attenuating Th17 cell infiltration and potentially increasing Treg cell accumulation. Conclusion This study emphasizes PPIH's critical role in HCC progression by facilitating tumor growth and survival while modulating the immune landscape, thereby positioning PPIH as a potential therapeutic target for HCC management.
Collapse
Affiliation(s)
- Jiaxin Bei
- Department of Immuno-Oncology, First School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Zihao Sun
- Department of Immuno-Oncology, First School of Clinical Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Rongdang Fu
- Department of Hepatic Surgery, the First People’ S Hospital of FoShan, Guangdong, 528000, People’s Republic of China
| | - Xinkun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Jiabai Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Yongyou Luo
- Department of Pathology, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yihu Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Zhisheng Wei
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
3
|
Protasoni M, López-Polo V, Stephan-Otto Attolini C, Brandariz J, Herranz N, Mateo J, Ruiz S, Fernandez-Capetillo O, Kovatcheva M, Serrano M. Cyclophilin D plays a critical role in the survival of senescent cells. EMBO J 2024; 43:5972-6000. [PMID: 39448884 PMCID: PMC11612481 DOI: 10.1038/s44318-024-00259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Senescent cells play a causative role in many diseases, and their elimination is a promising therapeutic strategy. Here, through a genome-wide CRISPR/Cas9 screen, we identify the gene PPIF, encoding the mitochondrial protein cyclophilin D (CypD), as a novel senolytic target. Cyclophilin D promotes the transient opening of the mitochondrial permeability transition pore (mPTP), which serves as a failsafe mechanism for calcium efflux. We show that senescent cells exhibit a high frequency of transient CypD/mPTP opening events, known as 'flickering'. Inhibition of CypD using genetic or pharmacologic tools, including cyclosporin A, leads to the toxic accumulation of mitochondrial Ca2+ and the death of senescent cells. Genetic or pharmacological inhibition of NCLX, another mitochondrial calcium efflux channel, also leads to senolysis, while inhibition of the main Ca2+ influx channel, MCU, prevents senolysis induced by CypD inhibition. We conclude that senescent cells are highly vulnerable to elevated mitochondrial Ca2+ ions, and that transient CypD/mPTP opening is a critical adaptation mechanism for the survival of senescent cells.
Collapse
Affiliation(s)
- Margherita Protasoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge, CB21 6GP, UK
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | | | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20814, USA
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Center (CNIO), 28028, Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge, CB21 6GP, UK.
| |
Collapse
|
4
|
Favretto F, Jiménez‐Faraco E, Catucci G, Di Matteo A, Travaglini‐Allocatelli C, Sadeghi SJ, Dominici P, Hermoso JA, Astegno A. Evaluating the potential of non-immunosuppressive cyclosporin analogs for targeting Toxoplasma gondii cyclophilin: Insights from structural studies. Protein Sci 2024; 33:e5157. [PMID: 39312281 PMCID: PMC11418636 DOI: 10.1002/pro.5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/25/2024]
Abstract
Toxoplasmosis persists as a prevalent disease, facing challenges from parasite resistance and treatment side effects. Consequently, identifying new drugs by exploring novel protein targets is essential for effective intervention. Cyclosporin A (CsA) possesses antiparasitic activity against Toxoplasma gondii, with cyclophilins identified as possible targets. However, CsA immunosuppressive nature hinders its use as an antitoxoplasmosis agent. Here, we evaluate the potential of three CsA derivatives devoid of immunosuppressive activity, namely, NIM811, Alisporivir, and dihydrocyclosporin A to target a previously characterized cyclophilin from Toxoplasma gondii (TgCyp23). We determined the X-ray crystal structures of TgCyp23 in complex with the three analogs and elucidated their binding and inhibitory properties. The high resolution of the structures revealed the precise positioning of ligands within the TgCyp23 binding site and the details of protein-ligand interactions. A comparison with the established ternary structure involving calcineurin indicates that substitutions at position 4 in CsA derivatives prevent calcineurin binding. This finding provides a molecular explanation for why CsA analogs can target Toxoplasma cyclophilins without compromising the human immune response.
Collapse
Affiliation(s)
| | - Eva Jiménez‐Faraco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera (IQF), CSICMadridSpain
| | - Gianluca Catucci
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | | | | | - Sheila J. Sadeghi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Paola Dominici
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Juan A. Hermoso
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera (IQF), CSICMadridSpain
| | | |
Collapse
|
5
|
Kim G, Yoon KS, Ha J, Kang I, Choe W. The PPIase Activity of CypB Is Essential for the Activation of Both AKT/mTOR and XBP1s Signaling Pathways during the Differentiation of 3T3-L1 Preadipocytes. Nutrients 2024; 16:2465. [PMID: 39125345 PMCID: PMC11313753 DOI: 10.3390/nu16152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we undertook an extensive investigation to determine how CypB PPIase activity affects preadipocyte differentiation and lipid metabolism. Our findings revealed that inhibition of CypB's PPIase activity suppressed the expression of crucial proteins involved in adipocyte differentiation and induced changes in proteins regulating the cell cycle. Furthermore, we clarified the impact of CypB's PPIase activity on lipid metabolism via the AKT/mTOR signaling pathway. Additionally, we demonstrated the involvement of CypB's PPIase activity in lipid metabolism through the XBP1s pathway. These discoveries offer invaluable insights for devising innovative therapeutic strategies aimed at treating and averting obesity and its related health complications. Targeting CypB's PPIase activity may emerge as a promising avenue for addressing obesity-related conditions. Furthermore, our research opens up opportunities for creating new therapeutic strategies by enhancing our comprehension of the processes involved in cellular endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
| | - Kyung-Sik Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Gomes SF, Alvarenga ES, Baia VC, Oliveira DF. N-Phenylnorbornenesuccinimide derivatives, agricultural defensive, and enzymatic target selection. PEST MANAGEMENT SCIENCE 2024; 80:3278-3292. [PMID: 38372427 DOI: 10.1002/ps.8031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Faced with the need to develop new herbicides with modes of action different to those observed for existing agrochemicals, one of the most promising strategies employed by synthetic chemists involves the structural modification of molecules found in natural products. Molecules containing amides, imides, and epoxides as functional groups are prevalent in nature and find extensive application in synthesizing more intricate compounds due to their biological properties. In this context, this paper delineates the synthesis of N-phenylnorbornenesuccinimide derivatives, conducts biological assays, and carries out in silico investigation of the protein target associated with the most potent compound in plant organisms. The phytotoxic effects of the synthesized compounds (2-29) were evaluated on Allium cepa, Bidens pilosa, Cucumis sativus, Sorghum bicolor, and Solanum lycopersicum. RESULTS Reaction of endo-bicyclo[2.2.1]hept-5-ene-3a,7a-dicarboxylic anhydride (1) with aromatic amines led to the N-phenylnorbornenesuccinic acids (2-11) with yields ranging from 75% to 90%. Cyclization of compounds (2-11) in the presence of acetic anhydride and sodium acetate afforded N-phenylnorbornenesuccinimides (12-20) with yields varying from 65% to 89%. Those imides were then subjected to epoxidation reaction to afford N-phenylepoxynorbornanesuccimides (21-29) with yields from 60% to 90%. All compounds inhibited the growth of seedlings of the plants evaluated. Substance 23 was the most active against the plants tested, inhibiting 100% the growth of all species in all concentrations. Cyclophilin was found to be the enzymatic target of compound 23. CONCLUSION These findings suggest that derivatives of N-phenylnorbornenesuccinimide are promising compounds in the quest for more selective and stable agrochemicals. This perspective reinforces the significance of these derivatives as potential innovative herbicides and emphasizes the importance of further exploring their biological activity on weeds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sabriny F Gomes
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elson S Alvarenga
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor C Baia
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
7
|
Sukadeetad K, Sripanidkulchai B, Tangsukworakhun S, Payomchuen R, Sakulchatrungroj A, Supmoon S, Punkvang A. Thai traditional medicines reduce CD147 levels in lung cells: Potential therapeutic candidates for cancers, inflammations, and COVID-19. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118042. [PMID: 38493907 DOI: 10.1016/j.jep.2024.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cluster of differentiation 147 (CD147) is identified as the signaling protein relevant importantly in various cancers, inflammations, and coronavirus disease 2019 (COVID-19) via interacting with extracellular cyclophilin A (CypA). The reduction of CD147 levels inhibits the progression of CD147-associated diseases. Thai traditional medicines (TTMs): Keaw-hom (KH), Um-ma-ruek-ka-wa-tee (UM), Chan-ta-lee-la (CT), and Ha-rak (HR) have been used as anti-pyretic and anti-respiratory syndromes caused from various conditions including cancers, inflammations, and infections. Thus, these medicines would play a crucial role in the reduction of CD147 levels. AIM OF THE STUDY This article aimed to investigate the effects of KH, UM, CT, and HR for reducing the CD147 levels through in vitro study. Additionally, in silico study was employed to screen the active compounds reflexing the reduction of CD147 levels. MATERIALS AND METHODS The immunofluorescent technique was used to evaluate the reduction of CD147 levels in human lung epithelial cells (BEAS-2B) stimulated with CypA for eight extracts of KH, UM, CT, and HR obtained from water decoction (D) and 70% ethanol maceration (M) including, KHD, UMD, CTD, HRD, KHM, UMM, CTM, and HRM. RESULTS UM extracts showed the most efficiency for reduction of CD147 levels in the cytoplasm and perinuclear of BEAS-2B cells stimulated with CypA. Phenolic compounds composing polyphenols, polyphenol sugars, and flavonoids were identified as the major chemical components of UMD and UMM. Further, molecular docking calculations identified polyphenol sugars as CypA inhibitors. CONCLUSIONS UMD and UMM are potential for reduction of CD147 levels which provide a useful information for further development of UM as potential therapeutic candidates for CD147-associated diseases such as cancers, inflammations, and COVID-19.
Collapse
Affiliation(s)
- Kannika Sukadeetad
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Ronnachai Payomchuen
- Thai Traditional and Alternative Medicine, Nakhon Phanom Hospital, Nakhon Phanom, 48000, Thailand
| | - Apichat Sakulchatrungroj
- Thai Traditional and Alternative Medicine, Nakhon Phanom Hospital, Nakhon Phanom, 48000, Thailand
| | - Sasithon Supmoon
- Thai Traditional and Alternative Medicine, Nakhon Phanom Hospital, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand.
| |
Collapse
|
8
|
Hilbig K, Towers R, Schmitz M, Bornhäuser M, Lennig P, Zhang Y. Cyclosporin A-Based PROTACs Can Deplete Abundant Cellular Cyclophilin A without Suppressing T Cell Activation. Molecules 2024; 29:2779. [PMID: 38930843 PMCID: PMC11206246 DOI: 10.3390/molecules29122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cyclophilin A (CypA), the cellular receptor of the immunosuppressant cyclosporin A (CsA), is an abundant cytosolic protein and is involved in a variety of diseases. For example, CypA supports cancer proliferation and mediates viral infections, such as the human immunodeficiency virus 1 (HIV-1). Here, we present the design of PROTAC (proteolysis targeting chimera) compounds against CypA to induce its intracellular proteolysis and to investigate their effect on immune cells. Interestingly, upon connecting to E3 ligase ligands, both peptide-based low-affinity binders and CsA-based high-affinity binders can degrade CypA at nM concentration in HeLa cells and fibroblast cells. As the immunosuppressive effect of CsA is not directly associated with the binding of CsA to CypA but the inhibition of phosphatase calcineurin by the CypA:CsA complex, we investigated whether a CsA-based PROTAC compound could induce CypA degradation without affecting the activation of immune cells. P3, the most efficient PROTAC compound discovered from this study, could deplete CypA in lymphocytes without affecting cell proliferation and cytokine production. This work demonstrates the feasibility of the PROTAC approach in depleting the abundant cellular protein CypA at low drug dosage without affecting immune cells, allowing us to investigate the potential therapeutic effects associated with the endogenous protein in the future.
Collapse
Affiliation(s)
- Katharina Hilbig
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; (K.H.); (P.L.)
| | - Russell Towers
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (R.T.); (M.B.)
| | - Marc Schmitz
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (R.T.); (M.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- School of Cancer and Pharmaceutical Science, King’s College, London WC2R 2LS, UK
| | - Petra Lennig
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; (K.H.); (P.L.)
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; (K.H.); (P.L.)
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
10
|
Abdessadak O, Kandwal P, Alaqarbeh M, Tabti K, Sbai A, Ajana MA, Lakhlifi T, Bouachrine M. Exploring azomethine ylides reactivity with acrolein through cycloaddition reaction and computational antiviral activity assessment against hepatitis C virus. J Mol Model 2024; 30:23. [PMID: 38177613 DOI: 10.1007/s00894-023-05818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
CONTEXT The regioselectivity and diastereoselectivity of the 1,3-dipolar cycloaddition reaction between azomethine ylides and acrolein were investigated. The DFT studies revealed that the favored pathway leads to the formation of cis-cycloadduct pyrrolidine and these computational findings align with experimental observations. The cis-cycloadduct pyrrolidine product serves as an advanced intermediate in the synthesis of a hepatitis C virus inhibitor. For this, the antiviral activity of cis-cycloadduct pyrrolidine against cyclophilin A, the co-factor responsible for hepatitis C virus, was also evaluated through molecular docking simulations which revealed intriguing interactions and a high C-score, which were further confirmed by molecular dynamics simulations, demonstrating stability over a 100-ns simulation period. Furthermore, the cis-cycloadduct pyrrolidine exhibits favorable drug-like properties and a better ADMET profile compared to hepatitis C virus inhibitor. METHODS Chemical reactivity studies were performed using DFT method by the functional B3LYP at 6-31G (d, p) computational level by GAUSSIAN 16 program. Frontal molecular orbitals theory used to investigate HOMO/LUMO interactions between azomethine ylides and acrolein. Findings of this approach were confirmed by global reactivity indices and electron displacement was investigated based on Fukui functions. Furthermore, the activation energies were determined after frequency calculations using TS Berny algorithm and transition states were confirmed by the presence of a single imaginary frequency. Moreover, antiviral activity of cis-cycloadduct was explored through molecular docking using Surflex-Dock suite SYBYL X 2.0, and molecular dynamics simulation using GROMACS program. Finally, drug-like properties were investigated with SwissADME and ADMETlab 2.0.
Collapse
Affiliation(s)
- Oumayma Abdessadak
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Pankaj Kandwal
- Department of Chemistry, National Institute of Technology, Dehradun, Uttarakhand, 246174, India
| | - Marwa Alaqarbeh
- Basic Science Department, Prince Al Hussein bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | - Kamal Tabti
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco.
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, Moulay Ismail University, 50000, Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, 23000, Beni-Mellal, Morocco
| |
Collapse
|
11
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
12
|
Ye J, Pang Y, Yang X, Zhang C, Shi L, Chen Z, Huang G, Wang X, Lu F. PPIH gene regulation system and its prognostic significance in hepatocellular carcinoma: a comprehensive analysis. Aging (Albany NY) 2023; 15:11448-11470. [PMID: 37874737 PMCID: PMC10637785 DOI: 10.18632/aging.205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Peptidyl-prolyl isomerase H (PPIH) is a member of the cyclophilin protein family, which functions as a molecular chaperone and is involved in the splicing of pre-mRNA. According to reports, the malignant progression of HCC related to hepatitis B virus (HBV) is tightly associated with RNA-binding proteins. Nevertheless, there is no research on PPIH expression or its function in the occurrence and progression of HCC. RESULTS We are the first to reveal that the mRNA and protein levels of Ppih are substantially overexpressed in HCC, as the outcomes show. A significant correlation existed between enriched expression of Ppih within HCC and more advanced, poorly differentiated, and TP53-mutated tumors. CONCLUSION These findings, which suggest that Ppih may serve as a predictive biomarker for people with HCC, serve as a starting point for further investigation into the function of Ppih in the progression of carcinogenesis. METHODS Accordingly, we utilized clinical samples and bioinformatics analysis to assess Ppih's mRNA, protein expression, and gene regulatory system in HCC. Additionally, Wilcoxon signed-rank testing and logistic regression were utilized to inspect the association between clinicopathological factors and Ppih. Clinical pathological traits linked to overall survival (OS) among HCC patients were examined via TCGA data via Cox regression and the Kaplan-Meier approach. Additionally, via TCGA data collection, gene set enrichment assessment was also conducted.
Collapse
Affiliation(s)
- Jun Ye
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuan Zhang
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Lei Shi
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Zhitao Chen
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Xianhe Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Fangyang Lu
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| |
Collapse
|
13
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
14
|
Kuwazuru J, Suico MA, Omachi K, Kojima H, Kamura M, Kaseda S, Kawahara T, Hitora Y, Kato H, Tsukamoto S, Wada M, Asano T, Kotani S, Nakajima M, Misumi S, Sannomiya Y, Horizono J, Koyama Y, Owaki A, Shuto T, Kai H. CyclosporinA Derivative as Therapeutic Candidate for Alport Syndrome by Inducing Mutant Type IV Collagen Secretion. KIDNEY360 2023; 4:909-917. [PMID: 37143203 PMCID: PMC10371266 DOI: 10.34067/kid.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Key Points Screening of natural product extracts to find candidate compounds that increase mutant type IV collagen α 3,4,5 (α 345(IV)) trimer secretion in Alport syndrome (AS). Cyclosporin A (CsA) and alisporivir (ALV) increase mutant α 345(IV) trimer secretion in AS. PPIF/cyclophilin D mediates the effect of CsA and ALV on mutant trimer secretion. Background Type IV collagen α 3,4,5 (α 345(IV)) is an obligate trimer that is secreted to form a collagen network, which is the structural foundation of basement membrane. Mutation in one of the genes (COL4A3 , A4 , A5 ) encoding these proteins underlies the progressive genetic nephropathy Alport syndrome (AS) due to deficiency in trimerization and/or secretion of the α 345(IV) trimer. Thus, improving mutant α 345(IV) trimerization and secretion could be a good therapeutic approach for AS. Methods Using the nanoluciferase-based platform that we previously developed to detect α 345(IV) formation and secretion in HEK293T cells, we screened libraries of natural product extracts and compounds to find a candidate compound capable of increasing mutant α 345(IV) secretion. Results The screening of >13,000 extracts and >600 compounds revealed that cyclosporin A (CsA) increased the secretion of mutant α 345(IV)-G1244D. To elucidate the mechanism of the effect of CsA, we evaluated CsA derivatives with different ability to bind to calcineurin (Cn) and cyclophilin (Cyp). Alisporivir (ALV), which binds to Cyp but not to Cn, increased the trimer secretion of mutant α 345(IV). Knockdown studies on Cyps showed that PPIF/cyclophilin D was involved in the trimer secretion-enhancing activity of CsA and ALV. We confirmed that other α 345(IV) mutants are also responsive to CsA and ALV. Conclusions CsA was previously reported to improve proteinuria in patients with AS, but owing to its nephrotoxic effect, CsA is not recommended for treatment in patients with AS. Our data raise the possibility that ALV could be a safer option than CsA. This study provides a novel therapeutic candidate for AS with an innovative mechanism of action and reveals an aspect of the intracellular regulatory mechanism of α 345(IV) that was previously unexplored.
Collapse
Affiliation(s)
- Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teppei Kawahara
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Useful and Unique Natural Products for Drug Discovery and Development (UpRod), Program for Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Yuki Hitora
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Kato
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sachiko Tsukamoto
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikiyo Wada
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Useful and Unique Natural Products for Drug Discovery and Development (UpRod), Program for Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Toshifumi Asano
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shogo Misumi
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aimi Owaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Remenchik E, Mayo PR, Hobbs TM, Greytok JA, Foster EP, Zhao C, Ure D, Trepanier DJ, Foster RT. Effect of a High-Fat Meal on Single-Dose Rencofilstat (CRV431) Oral Bioavailability in Healthy Human Subjects. Clin Pharmacol Drug Dev 2023; 12:287-293. [PMID: 36251165 DOI: 10.1002/cpdd.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Rencofilstat (RCF) is a novel cyclophilin inhibitor under development for the treatment of nonalcoholic steatohepatitis and hepatocellular carcinoma. This phase 1, randomized, open-label study in healthy participants assessed the relative bioavailability of a single dose of RCF 225-mg soft gelatin capsules in both fasted and high-fat conditions. Forty-four participants were enrolled to either the fasted (n = 24) or the high-fat fed (n = 20) arm. Noncompartmental pharmacokinetics were evaluated following a single 225-mg oral dose. Administration of RCF with a high-fat meal led to increases in maximum concentration, area under the concentration-time curve (AUC) from time 0 to 24 hours, and AUC from time 0 to infinity fed-to-fasted geometric mean ratios of 102.2%, 114.5%, and 132.9%, respectively. All AUC geometric mean ratios were outside of the 80% to 125% range, suggesting that a high-fat meal can increase the extent of RCF exposure. Time to maximum concentration increased from 1.5 to 1.8 hours in the fasted and high-fat groups, respectively, suggesting slightly delayed absorption. High fat intake may delay gastric emptying while increasing the absorption and bioavailability of RCF. No treatment-emergent adverse events were observed in the fasted group, and 1 treatment-emergent adverse event occurred in the high-fat meal group. The differences in observed whole-blood concentrations are unlikely to have clinically relevant effects given the wide therapeutic index of RCF demonstrated in previous phase 1 studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daren Ure
- Hepion Pharmaceuticals, Edison, New Jersey, USA
| | | | | |
Collapse
|
16
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|