1
|
Mérignac-Lacombe J, Kornbausch N, Sivarajan R, Boichot V, Berg K, Oberwinkler H, Saliba AE, Loos HM, Ehret Kasemo T, Scherzad A, Bodem J, Buettner A, Neiers F, Erhard F, Hackenberg S, Heydel JM, Steinke M. Characterization of a Human Respiratory Mucosa Model to Study Odorant Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12696-12706. [PMID: 38775624 DOI: 10.1021/acs.jafc.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nasal xenobiotic metabolizing enzymes (XMEs) are important for the sense of smell because they influence odorant availability and quality. Since the major part of the human nasal cavity is lined by a respiratory mucosa, we hypothesized that this tissue contributed to nasal odorant metabolism through XME activity. Thus, we built human respiratory tissue models and characterized the XME profiles using single-cell RNA sequencing. We focused on the XMEs dicarbonyl and l-xylulose reductase, aldehyde dehydrogenase (ALDH) 1A1, and ALDH3A1, which play a role in food odorant metabolism. We demonstrated protein abundance and localization in the tissue models and showed the metabolic activity of the corresponding enzyme families by exposing the models to the odorants 3,4-hexandione and benzaldehyde. Using gas chromatography coupled with mass spectrometry, we observed, for example, a significantly higher formation of the corresponding metabolites 4-hydroxy-3-hexanone (39.03 ± 1.5%, p = 0.0022), benzyl alcohol (10.05 ± 0.88%, p = 0.0008), and benzoic acid (8.49 ± 0.57%, p = 0.0004) in odorant-treated tissue models compared to untreated controls (0 ± 0, 0.12 ± 0.12, and 0.18 ± 0.18%, respectively). This is the first study that reveals the XME profile of tissue-engineered human respiratory mucosa models and demonstrates their suitability to study nasal odorant metabolism.
Collapse
Affiliation(s)
- Jeanne Mérignac-Lacombe
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Nicole Kornbausch
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Rinu Sivarajan
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Valentin Boichot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Kevin Berg
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, 93053 Regensburg, Germany
| | - Heike Oberwinkler
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research (HZI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
- FAU Research Center "New Bioactive Compounds", Schlossplatz 4, 91054 Erlangen, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany
- FAU Research Center "New Bioactive Compounds", Schlossplatz 4, 91054 Erlangen, Germany
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, 93053 Regensburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 9 E bd Jeanne d'Arc, 21000 Dijon, France
| | - Maria Steinke
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, 97070 Würzburg, Germany
| |
Collapse
|
2
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
3
|
Debong MW, Homm I, Gigl M, Lang R, Hofmann T, Buettner A, Dawid C, Loos HM. Curry-Odorants and Their Metabolites Transfer into Human Milk and Urine. Mol Nutr Food Res 2024:e2300831. [PMID: 38602198 DOI: 10.1002/mnfr.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Indexed: 04/12/2024]
Abstract
SCOPE The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated. METHODS AND RESULTS Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with β-glucuronidase. CONCLUSION The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk.
Collapse
Affiliation(s)
- Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Ines Homm
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Michael Gigl
- Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Roman Lang
- Leibniz-Institute for Food Systems Biology at Technical University Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Thomas Hofmann
- Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Corinna Dawid
- Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany
| | - Helene M Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| |
Collapse
|
4
|
Debong MW, N'Diaye K, Schöberl D, Yin Y, Lang R, Buettner A, Hofmann T, Loos HM. Linalool, 1,8-Cineole, and Eugenol Transfer from a Curry Dish into Human Urine. Mol Nutr Food Res 2024; 68:e2300396. [PMID: 37953385 DOI: 10.1002/mnfr.202300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Indexed: 11/14/2023]
Abstract
SCOPE For most substances, there are several routes of excretion from the human body. This study focuses on urinary excretion of dietary odorants and compares the results with previously obtained results on excretion into milk. METHODS AND RESULTS Lactating mothers (n = 18) are given a standardized curry dish and donate urine samples before and after the intervention. The odorants 1,8-cineole, linalool, cuminaldehyde, cinnamaldehyde, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, sotolone, eugenol, vanillin, and γ-nonalactone are quantitatively analyzed. A significant transition of up to 6 µg g-1 creatinine into urine is observed for linalool, 1,8-cineole, and eugenol. Maximum concentrations are reached 1.5 h after the intervention for 1,8-cineole and eugenol as well as 2.5 h after the intervention for linalool. Comparison with previous results reveals that the excretion pattern of odorants into urine is divergent from the one into milk. In a second intervention study (n = 6), excretion of phase II metabolites into urine is studied using β-glucuronidase treatment. Linalool and eugenol concentrations are 23 and 77 times higher after treatment than before treatment with β-glucuronidase, respectively. CONCLUSION The study demonstrates transition of linalool, 1,8-cineole, and eugenol from the diet into urine and excretion of glucuronides in the case of linalool, eugenol, and vanillin.
Collapse
Affiliation(s)
- Marcel W Debong
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Katharina N'Diaye
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Daniela Schöberl
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Yue Yin
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Roman Lang
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
- Leibniz-Institute for Food Systems Biology at Technical University Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
- Leibniz-Institute for Food Systems Biology at Technical University Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| |
Collapse
|
5
|
Kornbausch N, Mérignac-Lacombe J, Neiers F, Thomas-Danguin T, Heydel JM, Steinke M, Hackenberg S, Loos HM. Perspectives on Nasal Odorant Metabolism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16488-16492. [PMID: 37877768 DOI: 10.1021/acs.jafc.3c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Olfaction is a multi-step process. At a peripheral level, nasal odorant metabolism contributes to olfaction via signal termination, variation, and regulation. We summarize current techniques used to investigate nasal odorant metabolism and give an outlook on future approaches, such as nasal tissue models and their potential contributions in future research directions.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jeanne Mérignac-Lacombe
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Agro, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
- Fraunhofer Institute for Silicate Research (ISC), 97070 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Clinic Wuerzburg, 52074 Aachen, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany
| |
Collapse
|
6
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231188147. [PMID: 37669015 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
7
|
Le Quéré JL, Schoumacker R. Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review. Molecules 2023; 28:6308. [PMID: 37687137 PMCID: PMC10489873 DOI: 10.3390/molecules28176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Perception of flavor is a dynamic process during which the concentration of aroma molecules at the olfactory epithelium varies with time as they are released progressively from the food in the mouth during consumption. The release kinetics depends on the food matrix itself but also on food oral processing, such as mastication behavior and food bolus formation with saliva, for which huge inter-individual variations exist due to physiological differences. Sensory methods such as time intensity (TI) or the more-recent methods temporal dominance of sensations (TDS) and temporal check-all-that-apply (TCATA) are used to account for the dynamic and time-related aspects of flavor perception. Direct injection mass spectrometry (DIMS) techniques that measure in real time aroma compounds directly in the nose (nosespace), aimed at obtaining data that reflect the pattern of aroma release in real time during food consumption and supposed to be representative of perception, have been developed over the last 25 years. Examples obtained with MS operated in chemical ionization mode at atmospheric or sub-atmospheric pressure (atmospheric pressure chemical ionization APCI or proton-transfer reaction PTR) are given, with emphases on studies conducted with simultaneous dynamic sensory evaluation. Inter-individual variations in terms of aroma release and their relevance for understanding flavor perception are discussed as well as the evidenced cross-modal interactions.
Collapse
Affiliation(s)
- Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | | |
Collapse
|
8
|
Bickel Haase T, Naumann-Gola S, Ortner E, Zorn H, Schweiggert-Weisz U. Thermal stabilisation of cocoa fruit pulp - Effects on sensory properties, colour and microbiological stability. Curr Res Food Sci 2023; 7:100549. [PMID: 37522133 PMCID: PMC10382628 DOI: 10.1016/j.crfs.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023] Open
Abstract
To improve cocoa pulp's shelf-life, preservation processes are necessary while maintaining the quality of the pulp. We applied pasteurisation and UHT-treatment and investigated different quality parameters: dry matter content, water activity, total soluble solids, colour and peroxidase activity. Both technologies inactivated peroxidase successfully. The colour of the pasteurised pulp was similar to the fresh, while UHT-treated pulp was more brownish. The sensory properties were investigated in detail by descriptive analysis and the identification of aroma-active volatile organic compounds. Fresh pulp revealed the highest aroma intensity for attribute unripe banana-like, whereas UHT-treated pulp scored highest in the intensity of attribute tropical fruit-like. Pasteurised pulp showed strong similarities to the fresh pulp. Fresh cocoa pulp exhibited 74 aroma-active regions identified by GC-MS/O. UHT-treated and pasteurised pulp accounted for 66 and 60 aroma-active regions, respectively. Five identified substances were only found in the fresh and pasteurised pulp, namely: δ-carene, 1-pentanol, 3-(methylthio)propanol, phenol and δ-undecalactone. Similarly, fresh and UHT-treated pulp shared ten exclusive odorants, such as decanal, geraniol, and δ-nonalactone. The pasteurised and UHT-treated pulp shared two compounds, δ-decalactone and 5-(hydroxymethyl)furfural. Furthermore, the thermally treated pulps could be stored at 4 °C and 23 °C for 24 weeks without observing a significant growth of microorganisms. The rate of non-enzymatic browning was higher in samples stored at 23 °C compared to those stored at 4 °C, leading to higher browning indices. We demonstrated that pasteurisation and ultra-high temperature treatment are suitable technologies for the stabilisation of cocoa fruit pulp. These resulted in prolonged shelf-lifes and minimal changes in the sensory prorperties of the treated pulps, characterised by a reduction in the aroma diversities. This work provides important insights for the thermal stabilisation of further side-streams.
Collapse
Affiliation(s)
- Thomas Bickel Haase
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354, Freising, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig University, 35392, Giessen, Germany
| | - Susanne Naumann-Gola
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354, Freising, Germany
| | - Eva Ortner
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354, Freising, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig University, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35392, Giessen, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354, Freising, Germany
- Institute for Nutritional and Food Sciences, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
9
|
Margulis E, Lang T, Tromelin A, Ziaikin E, Behrens M, Niv MY. Bitter Odorants and Odorous Bitters: Toxicity and Human TAS2R Targets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37263600 DOI: 10.1021/acs.jafc.3c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Flavor is perceived through the olfactory, taste, and trigeminal systems, mediated by designated GPCRs and channels. Signal integration occurs mainly in the brain, but some cross-reactivities occur at the receptor level. Here, we predict potential bitterness and taste receptors targets for thousands of odorants. BitterPredict and BitterIntense classifiers suggest that 3-9% of flavor and food odorants have bitter taste, but almost none are intensely bitter. About 14% of bitter molecules are expected to have an odor. Bitterness is more common for unpleasant smells such as fishy, amine, and ammoniacal, while non-bitter odorants often have pleasant smells. Experimental toxicity values suggest that fishy ammoniac smells are more toxic than pleasant smells, regardless of bitterness. TAS2R14 is predicted as the main bitter receptor for odorants, confirmed by in vitro profiling of 10 odorants. The activity of bitter odorants may have implications for physiology due to ectopic expression of taste and smell receptors.
Collapse
Affiliation(s)
- Eitan Margulis
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Anne Tromelin
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Evgenii Ziaikin
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Masha Y Niv
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| |
Collapse
|
10
|
Boichot V, Menetrier F, Saliou JM, Lirussi F, Canon F, Folia M, Heydel JM, Hummel T, Menzel S, Steinke M, Hackenberg S, Schwartz M, Neiers F. Characterization of human oxidoreductases involved in aldehyde odorant metabolism. Sci Rep 2023; 13:4876. [PMID: 36966166 PMCID: PMC10039900 DOI: 10.1038/s41598-023-31769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Oxidoreductases are major enzymes of xenobiotic metabolism. Consequently, they are essential in the chemoprotection of the human body. Many xenobiotic metabolism enzymes have been shown to be involved in chemosensory tissue protection. Among them, some were additionally shown to be involved in chemosensory perception, acting in signal termination as well as in the generation of metabolites that change the activation pattern of chemosensory receptors. Oxidoreductases, especially aldehyde dehydrogenases and aldo-keto reductases, are the first barrier against aldehyde compounds, which include numerous odorants. Using a mass spectrometry approach, we characterized the most highly expressed members of these families in the human nasal mucus sampled in the olfactory vicinity. Their expression was also demonstrated using immunohistochemistry in human epitheliums sampled in the olfactory vicinity. Recombinant enzymes corresponding to three highly expressed human oxidoreductases (ALDH1A1, ALDH3A1, AKR1B10) were used to demonstrate the high enzymatic activity of these enzymes toward aldehyde odorants. The structure‒function relationship set based on the enzymatic parameters characterization of a series of aldehyde odorant compounds was supported by the X-ray structure resolution of human ALDH3A1 in complex with octanal.
Collapse
Affiliation(s)
- Valentin Boichot
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Michel Saliou
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014-US Inserm 41-PLBS, University of Lille, Lille, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000, Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000, Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000, Besançon, France
| | - Francis Canon
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mireille Folia
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000, Dijon, France
| | - Jean-Marie Heydel
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Susanne Menzel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070, Wuerzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Roentgenring 11, 97070, Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology-Head and Neck Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathieu Schwartz
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
11
|
de Groot JHB, Haertl T, Loos HM, Bachmann C, Kontouli A, Smeets MAM. Unraveling the universality of chemical fear communication: evidence from behavioral, genetic, and chemical analyses. Chem Senses 2023; 48:bjad046. [PMID: 37944028 PMCID: PMC10718800 DOI: 10.1093/chemse/bjad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 11/12/2023] Open
Abstract
Abundant evidence indicates that humans can communicate threat-related information to conspecifics through their body odors. However, prior research has been primarily conducted on Western (WEIRD) samples. In this study, we aimed to investigate whether threat-related information can be transmitted by individuals of East Asian descent who carry a single-nucleotide polymorphism (SNP) 538G → A in the ABCC11 gene, which significantly reduces (noticeable) body odor. To examine this, we recruited 18 self-identified male East Asian AA-homozygotes and 18 self-identified male Western individuals who were carriers of the functional G-allele. We collected samples of their fear-related and neutral body odors. Subsequently, we conducted a double-blind behavioral experiment in which we presented these samples to 69 self-identified female participants of Western Caucasian and East Asian backgrounds. The participants were asked to rate faces that were morphed between expressions of fear and disgust. Notably, despite the "odorless" phenotypical expression of the ABCC11-mutation in East Asians, their fear odor caused a perceptual fear bias in both East Asian and Caucasian receivers. This finding leaves open the possibility of universal fear chemosignaling. Additionally, we conducted exploratory chemical analysis to gain initial insights into the chemical composition of the body odors presented. In a subsequent pre-registered behavioral study (N = 33), we found that exposure to hexadecanoic acid, an abundant compound in the fear and neutral body odor samples, was sufficient to reproduce the observed behavioral effects. While exploratory, these findings provide insight into how specific chemical components can drive chemical fear communication.
Collapse
Affiliation(s)
- Jasper H B de Groot
- Behavioural Science Institute, Radboud University, Nijmegen, 6525 XZ, the Netherlands
| | - Tobias Haertl
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Helene M Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Department of Chemistry and Pharmacy, Fraunhofer Institute for Process Engineering and Packaging, Freising 85354, Germany
| | - Christin Bachmann
- Department of Social, Health, & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, the Netherlands
| | - Athanasia Kontouli
- Department of Social, Health, & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, the Netherlands
| | - Monique A M Smeets
- Department of Social, Health, & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, the Netherlands
| |
Collapse
|
12
|
Identification of D-Limonene Metabolites by LC-HRMS: An Exploratory Metabolic Switching Approach in a Mouse Model of Diet-Induced Obesity. Metabolites 2022; 12:metabo12121246. [PMID: 36557284 PMCID: PMC9780935 DOI: 10.3390/metabo12121246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic switching has been raised as an important phenomenon to be studied in relation to xenobiotic metabolites, since the dose of the exposure determines the formation of metabolites and their bioactivity. Limonene is a monoterpene mostly found in citrus fruits with health activity, and its phase II metabolites and activity are still not clear. The aim of this work was to evaluate the effects of D-limonene in the development of diet-induced obesity in mice and to investigate metabolites that could be generated in a study assessing different doses of supplementation. Animals were induced to obesity and supplemented with 0.1% or 0.8% D-limonene added to the feed. Limonene phase I and II metabolites were identified in liver and urine by LC-ESI-qToF-MS/MS. To the best of our knowledge, in this study three new phase I metabolites and ten different phase II metabolites were first attributed to D-limonene. Supplementation with 0.1% D-limonene was associated with lower weight gain and a trend to lower accumulation of adipose tissue deposits. The metabolites limonene-8,9-diol, perillic acid and perillic acid-8,9-diol should be explored in future research as anti-obesogenic agents as they were the metabolites most abundant in the urine of mice that received 0.1% D-limonene in their feed.
Collapse
|
13
|
Robert-Hazotte A, Faure P, Ménétrier F, Folia M, Schwartz M, Le Quéré JL, Neiers F, Thomas-Danguin T, Heydel JM. Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8385-8394. [PMID: 35776896 DOI: 10.1021/acs.jafc.2c02720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the peripheral olfactory process, odorant metabolizing enzymes are involved in the active biotransformation of odorants, thus influencing the intensity and quality of the signal, but little evidence exists in humans. Here, we characterized the fast nasal metabolism of the food aroma pentane-2,3-dione in vivo and identified two resulting metabolites in the nasal-exhaled air, supporting the metabolizing role of the dicarbonyl/l-xylulose reductase. We showed in vitro, using the recombinant enzyme, that pentane-2,3-dione metabolism was inhibited by a second odorant (e.g., butanoic acid) according to an odorant-odorant competitive metabolic mechanism. Hypothesizing that such mechanism exists in vivo, pentane-2,3-dione, presented with a competitive odorant, both at subthreshold concentrations, was actually significantly perceived, suggesting an increase in its nasal availability. Our results, suggesting that odorant metabolizing enzymes can balance the relative detection of odorants in a mixture, in turn influencing the intensity of the signal, should be considered to better manage flavor perception in food.
Collapse
Affiliation(s)
- Aline Robert-Hazotte
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Mireille Folia
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, F-21000 Dijon, France
| | - Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|