1
|
Du X, Li R, Xin H, Fan Y, Liu C, Feng X, Wang J, Dong C, Wang C, Li D, Fu Q, Bao X. In-Situ Dynamic Carburization of Mo Oxide with Unprecedented High CO Formation Rate in Reverse Water-Gas Shift Reaction. Angew Chem Int Ed Engl 2024; 63:e202411761. [PMID: 39143835 DOI: 10.1002/anie.202411761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
In situ construction of active structure under reaction conditions is highly desired but still remains challenging in many important catalytic processes. Herein, we observe structural evolution of molybdenum oxide (MoOx) into highly active molybdenum carbide (MoCx) during reverse water-gas shift (RWGS) reaction. Surface oxygen atoms in various Mo-based catalysts are removed in H2-containing atmospheres and then carbon atoms can accumulate on surface to form MoCx phase with the RWGS reaction going on, both of which are enhanced by the presence of intercalated H species or Pt-dopants in MoOx. The structural evolution from MoOx to MoCx is accompanied by enhanced CO2 conversion, which is positively correlated with the surface C/Mo ratio but negatively with the surface O/Mo ratio. As a result, an unprecedented CO formation rate of 7544.6 mmol ⋅ gcatal -1 ⋅ h-1 at 600 °C has been achieved over in situ carbonized H-intercalated MoO3 catalyst, which is even higher than those from noble metal catalysts. During 100 h stability test only a minimal deactivation rate of 2.3 % is observed.
Collapse
Affiliation(s)
- Xiangze Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Xin
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chengxiang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaohui Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
2
|
Zhan X, Zhang L, Choi J, Tan X, Hong S, Wu TS, Xiong P, Soo YL, Hao L, Li MMJ, Xu L, Robertson AW, Jung Y, Sun X, Sun Z. A Universal Synthesis of Single-Atom Catalysts via Operando Bond Formation Driven by Electricity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401814. [PMID: 39269738 DOI: 10.1002/advs.202401814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Indexed: 09/15/2024]
Abstract
Single-atom catalysts (SACs), featuring highly uniform active sites, tunable coordination environments, and synergistic effects with support, have emerged as one of the most efficient catalysts for various reactions, particularly for electrochemical CO2 reduction (ECR). However, the scalability of SACs is restricted due to the limited choice of available support and problems that emerge when preparing SACs by thermal deposition. Here, an in situ reconstruction method for preparing SACs is developed with a variety of atomic sites, including nickel, cadmium, cobalt, and magnesium. Driven by electricity, different oxygen-containing metal precursors, such as MOF-74 and metal oxides, are directly atomized onto nitrogen-doped carbon (NC) supports, yielding SACs with variable metal active sites and coordination structures. The electrochemical force facilitates the in situ generation of bonds between the metal and the supports without the need for additional complex steps. A series of MNxOy (M denotes metal) SACs on NC have been synthesized and utilized for ECR. Among these, NiNxOy SACs using Ni-MOF-74 as a metal precursor exhibit excellent ECR performance. This universal and general SAC synthesis strategy at room temperature is simpler than most reported synthesis methods to date, providing practical guidance for the design of the next generation of high-performance SACs.
Collapse
Affiliation(s)
- Xinyu Zhan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Libing Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junyoung Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xinyi Tan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing, 100081, China
| | - Song Hong
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Pei Xiong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Leiduan Hao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liang Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Yousung Jung
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaofu Sun
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Ji Y, Du J, Chen A, Gao X, Peng M. Transition Metal-Nitrogen-Carbon Single-Atom Catalysts Enhanced CO 2 Electroreduction Reaction: A Review. CHEMSUSCHEM 2024:e202401557. [PMID: 39223437 DOI: 10.1002/cssc.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
As the global energy crisis and environmental challenges worsen, CO2 conversion has emerged as a focal point in international research. CO2 electroreduction reaction (CO2ER) is a green and sustainable technology that converts CO2 into high-value chemicals, thereby achieving the recycling of carbon resources. However, the activity and selectivity are constrained by the performance of the catalyst. Although traditional N-doped carbon-based catalysts exhibit excellent performance toward CO2ER, the atomic utilization rate in these materials is far from 100 %. Single atom catalysts (SACs) can attain nearly 100 % atomic utilization efficiency because of the fully exposing metal atoms. Therefore, SACs have emerged as one of the hot research materials in the field of CO2ER. Recently, transition metal-nitrogen-carbon single-atom catalysts (TM-N-C SACs) have flourished because of their extraordinary catalytic activity, low cost, and excellent stability, demonstrating enormous application prospects in CO2ER. In this review, we concentrate on TM-N-C SACs that electrochemically reduce CO2 to high value products. A comprehensive and detailed discussion were conducted on the synthesis method, chemical structure, chemical characterization of TM-N-C SACs, as well as their catalytic performance, active sources, and mechanism exploration for CO2ER. Finally, challenges and prospects for commercial application of TM-N-C SACs catalysts suitable for CO2ER are proposed.
Collapse
Affiliation(s)
- Youan Ji
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Mengke Peng
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
4
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
5
|
Zhang W, Sun J, Wang H, Cui X. Recent Advances in Hydrogenation of CO 2 to CO with Heterogeneous Catalysts Through the RWGS Reaction. Chem Asian J 2024; 19:e202300971. [PMID: 38278764 DOI: 10.1002/asia.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
With the continuous increase in CO2 emissions, primarily from the combustion of coal and oil, the ecosystem faces a significant threat. Therefore, as an effective method to minimize the issue, the Reverse Water Gas Shift (RWGS) reaction which converts CO2 towards CO attracts much attention, is an environmentally-friendly method to mitigate climate change and lessen dependence on fossil fuels. Nevertheless, the inherent thermodynamic stability and kinetic inertness of CO2 is a big challenge under mild conditions. In addition, it remains another fundamental challenge in RWGS reaction owing to CO selectivity issue caused by CO2 further hydrogenation towards CH4 . Up till now, a series of catalysis systems have been developed for CO2 reduction reaction to produce CO. Herein, the research progress of the well-performed heterogeneous catalysts for the RWGS reaction were summarized, including the catalyst design, catalytic performance and reaction mechanism. This review will provide insights into efficient utilization of CO2 and promote the development of RWGS reaction.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Jiashu Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
6
|
Liu YY, Huang JR, Zhu HL, Liao PQ, Chen XM. Simultaneous Capture of CO 2 Boosting Its Electroreduction in the Micropores of a Metal-organic Framework. Angew Chem Int Ed Engl 2023; 62:e202311265. [PMID: 37782029 DOI: 10.1002/anie.202311265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Integration of CO2 capture capability from simulated flue gas and electrochemical CO2 reduction reaction (eCO2 RR) active sites into a catalyst is a promising cost-effective strategy for carbon neutrality, but is of great difficulty. Herein, combining the mixed gas breakthrough experiments and eCO2 RR tests, we showed that an Ag12 cluster-based metal-organic framework (1-NH2 , aka Ag12 bpy-NH2 ), simultaneously possessing CO2 capture sites as "CO2 relays" and eCO2 RR active sites, can not only utilize its micropores to efficiently capture CO2 from simulated flue gas (CO2 : N2 =15 : 85, at 298 K), but also catalyze eCO2 RR of the adsorbed CO2 into CO with an ultra-high CO2 conversion of 60 %. More importantly, its eCO2 RR performance (a Faradaic efficiency (CO) of 96 % with a commercial current density of 120 mA cm-2 at a very low cell voltage of -2.3 V for 300 hours and the full-cell energy conversion efficiency of 56 %) under simulated flue gas atmosphere is close to that under 100 % CO2 atmosphere, and higher than those of all reported catalysts at higher potentials under 100 % CO2 atmosphere. This work bridges the gap between CO2 enrichment/capture and eCO2 RR.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
7
|
Zhang J, Feng K, Li Z, Yang B, Yan B, Luo KH. Defect-Driven Efficient Selective CO 2 Hydrogenation with Mo-Based Clusters. JACS AU 2023; 3:2736-2748. [PMID: 37885587 PMCID: PMC10598559 DOI: 10.1021/jacsau.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Synthetic fuels produced from CO2 show promise in combating climate change. The reverse water gas shift (RWGS) reaction is the key to opening the CO2 molecule, and CO serves as a versatile intermediate for creating various hydrocarbons. Mo-based catalysts are of great interest for RWGS reactions featured for their stability and strong metal-oxygen interactions. Our study identified Mo defects as the intrinsic origin of the high activity of cluster Mo2C for CO2-selective hydrogenation. Specifically, we found that defected Mo2C clusters supported on nitrogen-doped graphene exhibited exceptional catalytic performance, attaining a reaction rate of 6.3 gCO/gcat/h at 400 °C with over 99% CO selectivity and good stability. Such a catalyst outperformed other Mo-based catalysts and noble metal-based catalysts in terms of facile dissociation of CO2, highly selective hydrogenation, and nonbarrier liberation of CO. Our study revealed that as a potential descriptor, the atomic magnetism linearly correlates to the liberation capacity of CO, and Mo defects facilitated product desorption by reducing the magnetization of the adsorption site. On the other hand, the defects were effective in neutralizing the negative charges of surface hydrogen, which is crucial for selective hydrogenation. Finally, we have successfully demonstrated that the combination of a carbon support and the carbonization process synergistically serves as a feasible strategy for creating rich Mo defects, and biochar can be a low-cost alternative option for large-scale applications.
Collapse
Affiliation(s)
- Jiajun Zhang
- National
Engineering Research Center of Green Recycling for Strategic Metal
Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Center
for Combustion Energy, Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education, International Joint Laboratory
on Low Carbon Clean Energy Innovation, Tsinghua
University, Beijing 100084, China
| | - Kai Feng
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhengwen Li
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bin Yang
- Center
for Combustion Energy, Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education, International Joint Laboratory
on Low Carbon Clean Energy Innovation, Tsinghua
University, Beijing 100084, China
| | - Binhang Yan
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Hong Luo
- Center
for Combustion Energy, Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education, International Joint Laboratory
on Low Carbon Clean Energy Innovation, Tsinghua
University, Beijing 100084, China
- Department
of Mechanical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
8
|
Ma J, Yu J, Chen G, Bai Y, Liu S, Hu Y, Al-Mamun M, Wang Y, Gong W, Liu D, Li Y, Long R, Zhao H, Xiong Y. Rational Design of N-Doped Carbon-Coated Cobalt Nanoparticles for Highly Efficient and Durable Photothermal CO 2 Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302537. [PMID: 37471253 DOI: 10.1002/adma.202302537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Photothermal CO2 hydrogenation to high-value-added chemicals and fuels is an appealing approach to alleviate energy and environmental concerns. However, it still relies on the development of earth-abundant, efficient, and durable catalysts. Here, the design of N-doped carbon-coated Co nanoparticles (NPs), as a photothermal catalyst, synthesized through a two-step pyrolysis of Co-based ZIF-67 precursor, is reported. Consequently, the catalyst exhibits remarkable activity and stability for photothermal CO2 hydrogenation to CO with a 0.75 mol gcat -1 h-1 CO production rate under the full spectrum of light illumination. The high activity and durability of these Co NPs are mainly attributed to the synergy of the attuned size of Co NPs, the thickness of carbon layers, and the N doping species. Impressively, the experimental characterizations and theoretical simulations show that such a simple N-doped carbon coating strategy can effectively facilitate the desorption of generated CO and activation of reactants due to the strong photothermal effect. This work provides a simple and efficient route for the preparation of highly active and durable nonprecious metal catalysts for promising photothermal catalytic reactions.
Collapse
Affiliation(s)
- Jun Ma
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Jing Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangyu Chen
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Bai
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shengkun Liu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yangguang Hu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wanbing Gong
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dong Liu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ran Long
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yujie Xiong
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Sun Y, Liu X, Zhu M, Zhang Z, Chen Z, Wang S, Ji Z, Yang H, Wang X. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation. DECARBON 2023:100018. [DOI: doi.org/10.1016/j.decarb.2023.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
10
|
Wu J, Liu X, Hao Y, Wang S, Wang R, Du W, Cha S, Ma XY, Yang X, Gong M. Ligand Hybridization for Electro-reforming Waste Glycerol into Isolable Oxalate and Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202216083. [PMID: 36594790 DOI: 10.1002/anie.202216083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
The electro-reforming of glycerol is an emerging technology of simultaneous hydrogen production and biomass valorization. However, its complex reaction network and limited catalyst tunability restrict the precise steering toward high selectivity. Herein, we incorporated the chelating phenanthrolines into the bulk nickel hydroxide and tuned the electronic properties by installing functional groups, yielding tunable selectivity toward formate (max 92.7 %) and oxalate (max 45.3 %) with almost linear correlation with the Hammett parameters. Further combinatory study of intermediate analysis and various spectroscopic techniques revealed the electronic effect of tailoring the valence band that balances between C-C cleavage and oxidation through the key glycolaldehyde intermediate. A two-electrode electro-reforming setup using the 5-nitro-1,10-phenanthroline-nickel hydroxide catalyst was further established to convert crude glycerol into pure H2 and isolable sodium oxalate with high efficiency.
Collapse
Affiliation(s)
- Jianxiang Wu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiang Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yaming Hao
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shaoyan Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Ran Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wei Du
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shuangshuang Cha
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xian-Yin Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200438, P. R. China
| | - Ming Gong
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|