1
|
Xu H, Xu Z, Wang K, Jin L, Liu Y, Chen J, Li L. Tungsten oxide-based electrocatalysts for energy conversion. Chem Commun (Camb) 2024; 60:13507-13517. [PMID: 39485081 DOI: 10.1039/d4cc04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of cutting-edge energy conversion technologies offers significant potential for addressing environmental challenges, enhancing energy security, improving economic competitiveness, and promoting resource conservation. This progress necessitates the development of advanced electrocatalysts. WOx demonstrates high intrinsic catalytic activity, excellent conductivity, an abundance of active sites, and remarkable stability, positioning it as a promising candidate for electrocatalytic reactions. Recently, there has been swift advancement in the development of WOx-based catalysts for various energy-conversion reactions. This review provides a thorough summary of recent developments in WOx-based catalysts for electrocatalytic reactions, emphasizing their multifunctional roles as active species, electron-transfer carriers, hydrogen spillover carriers, and microenvironment regulators. Moreover, it highlights the applications of WOx-based catalysts across different electrocatalytic reactions, with particular focus on the structure-activity relationship. Finally, the review discusses the challenges and future directions of these technologies, as well as key research areas necessary for achieving large-scale applications.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhili Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
2
|
Chen D, Mu S. Molten Salt-Assisted Synthesis of Catalysts for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408285. [PMID: 39246151 DOI: 10.1002/adma.202408285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
3
|
Bian L, Liang L, Fan Y, Liu X, Liang F, Peng Q, Han S, Liu L, Liu B. V-doped activated Ru/Ti 2.5V 0.5C 2 dual-active center accelerate hydrogen production from ammonia borane. J Colloid Interface Sci 2024; 671:543-552. [PMID: 38820839 DOI: 10.1016/j.jcis.2024.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Designing and constructing the active center of Ru-based catalysts is the key to efficient hydrolysis of ammonia borane (NH3BH3, AB) for hydrogen production. Herein, V-doped Ru/Ti2.5V0.5C2 dual-active center catalysts were synthesized, showing excellent catalytic ability for AB hydrolysis. The corresponding turnover frequency value was 1072 min-1 at 298 K, and the hydrolysis rate rB of AB was 235 × 103 mL·min-1·gRu-1. X-ray photoelectron spectroscopy results indicated that the interaction between V-doped Ti3C2 and catalytic metal Ru transfers electrons from Ti to Ru, resulting in electron-rich Ru species. According to density functional theory calculations, the activation energy and reaction dissociation energy of the reactants AB and H2O on V-doped catalysts were lower than those of Ru/Ti3C2, thus optimizing the catalytic kinetics of AB hydrolysis. The modification strategy of V-doped Ti3C2 provides a new pathway for the development of high-performance catalysts for AB hydrolysis.
Collapse
Affiliation(s)
- Linyan Bian
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China
| | - Licheng Liang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China
| | - Xianyun Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China
| | - Fei Liang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Shumin Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lili Liu
- Inner Mongolia First Machinery Group Co., Ltd, Baotou 014032 China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China; Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454000, PR China.
| |
Collapse
|
4
|
Kruger DD, García H, Primo A. Molten Salt Derived MXenes: Synthesis and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307106. [PMID: 39021320 PMCID: PMC11425216 DOI: 10.1002/advs.202307106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Indexed: 07/20/2024]
Abstract
About one decade after the first report on MXenes, these 2D early transition metal carbides or nitrides have become among the best-performing materials in electrode applications related to electrical energy storage devices and power-to-fuels conversion. MXenes are obtained by a top-down approach starting from the appropriate 3D MAX phase that undergoes etching of the A-site metal. Initial etching procedures are based on the use of concentrated HF or the in situ generation of this highly corrosive and poisonous reagent. Etching of the MAX phase is one of the major hurdles limiting the progress of the field. The present review summarizes an alternative, universal, and easily scalable etching procedure based on treating the MAX precursor with a Lewis acid molten salt. The review starts with presenting the current state of the art of the molten salt etching procedure to obtain or modify MXene, followed by a summary of the applications of these MXene samples. The aim of the review is to show the versatility and advantages of molten salt etching in terms of general applicability, control of the surface terminal groups, and uniform deposition of metal nanoparticles, among other features of the procedure.
Collapse
Affiliation(s)
- Dawid D. Kruger
- Instituto Universitario de Tecnología Química CSIC‐UPVUniversitat Politècnica de ValènciaAv. De los Naranjos s/nValència46022Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química CSIC‐UPVUniversitat Politècnica de ValènciaAv. De los Naranjos s/nValència46022Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química CSIC‐UPVUniversitat Politècnica de ValènciaAv. De los Naranjos s/nValència46022Spain
| |
Collapse
|
5
|
Yan W, Shi Z, Feng H, Yu J, Chen W, Chen Y. Crystalline metal phosphide-coated amorphous iron oxide-hydroxide (FeOOH) with oxygen vacancies as highly active and stable oxygen evolution catalyst in alkaline seawater at high current density. J Colloid Interface Sci 2024; 667:362-370. [PMID: 38640655 DOI: 10.1016/j.jcis.2024.04.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
In this study, we employed a straightforward phosphorylation approach to achieve a dual objective: constructing c-a heterostructures consisting of crystalline Ni12P5 and amorphous FeOOH, while simultaneously enhancing oxygen vacancies. The resulting oxygen evolution reaction (OER) catalyst, Ni12P5/FeOOH/NF, exhibited remarkable performance with current densities of 500 mA cm-2 in both 1 M KOH and 1 M KOH + seawater, requiring low overpotentials of only 288 and 365 mV, respectively. Furthermore, Ni12P5/FeOOH/NF exhibited only a slight increase in overpotential, with increments of 18 mV and 70 mV in 1 M KOH after 15 and 150 h, and 32 mV and 108 mV in 1 M KOH + seawater at 500 mA cm-2 after 15 and 150 h, respectively. This minimal change can be attributed to the stabilized c-a structure, the protective coating of Ni12P5, and superhydrophilic. Through in-situ Raman and ex-situ XPS analysis, we discovered that Ni12P5/FeOOH/NF can undergo a reconfiguration into an oxygen vacancy-rich (Fe/Ni)OOH phase during OER process. The elevated OER activity is mainly due to the contribution of the oxygen vacancy-rich (Fe/Ni)OOH phase from the reconfigure of the Ni12P5/FeOOH/NF. This finding emphasizes the critical role of oxygen vacancies in facilitating the production of OO species and overcoming the limitations associated with OOH formation, ultimately enhancing the kinetics of the OER.
Collapse
Affiliation(s)
- Wei Yan
- School of Science, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, PR China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Zhuang Shi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hao Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jinshi Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wenmiao Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
6
|
Kong J, Wang Z, Liu C, Wang S, Guo Y, Chen H, Wang J, Lü Z. Electrode switch-an efficient induced approach for self-activation of an electrode toward water splitting. Chem Commun (Camb) 2024; 60:7315-7318. [PMID: 38916276 DOI: 10.1039/d4cc01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In this paper, we provide a novel electrode switch (ES) method to improve the stability of the alkaline electrolyzer toward water splitting. The voltage of the alkaline electrolyzer consisting of commercial Ni mesh electrodes utilizing the ES mode exhibits extreme stability because highly active Ni oxide(hydroxide) with oxygen defects is in situ formed during the hydrogen evolution reaction (HER) polarization process.
Collapse
Affiliation(s)
- Jin Kong
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhihong Wang
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Chaoyue Liu
- School of Science, Harbin University of Science and Technology, Heilongjiang 150080, People's Republic of China
| | - Shuo Wang
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Yingshuang Guo
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Honglei Chen
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Jiepeng Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
- PERIC Hydrogen Technologies Co., Ltd, Handan 056000, People's Republic of China
| | - Zhe Lü
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Zhang S, Bai J, Ding Y, Ye J, Song Y, Debroye E, Fan W, Liu T. Surface charge modulation boosts electrocatalytic water splitting over iridium catalysts on a polyimide support. Chem Commun (Camb) 2024; 60:6821-6824. [PMID: 38873873 DOI: 10.1039/d4cc01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Developing high-performance iridium (Ir)-based catalysts with minimal precious Ir metal is a significant but challenging step towards the acidic oxygen evolution reaction (OER). Here, we report a high-performance OER catalyst with Ir nanoparticles on a polyimide support, where the polyimide support can effectively modulate the electronic structures of the Ir active sites for decreased thermodynamic barriers, but also enrich the local proton concentration near the Ir active sites, enhancing the OER rates.
Collapse
Affiliation(s)
- Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shouhan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jing Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yidan Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanhao Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Wang F, Tian F, Xia X, Pang Z, Wang S, Yu X, Li G, Zhao Y, Xu Q, Hu S, Ji L, Zou X, Lu X. One-step Synthesis of Organic Terminal 2D Ti 3C 2T x MXene Nanosheets by Etching of Ti 3AlC 2 in an Organic Lewis Acid Solvent. Angew Chem Int Ed Engl 2024; 63:e202405315. [PMID: 38588049 DOI: 10.1002/anie.202405315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The surface and interface chemistry are critical for controlling the properties of two-dimensional transition metal carbides and nitrides (MXenes). Numerous efforts have been devoted to the functionalization of MXenes with small inorganic ligands; however, few etching methods have been reported on the direct bonding of organic groups to MXene surfaces. In this work, we demonstrated an efficient and rapid strategy for the direct synthesis of 2D Ti3C2Tx MXene nanosheets with organic terminal groups in an organic Lewis acid (trifluoromethanesulfonic acid) solvent, without introducing additional intercalations. The dissolution of aluminum and the subsequent in situ introduction of trifluoromethanesulfonic acid resulted in the extraction of Ti3C2Tx MXene (T=CF3SO3 -) (denoted as CF3SO3H-Ti3C2Tx) flakes with sizes reaching 15 μm and high productivity (over 70 %) of monolayers or few layers. More importantly, the large CF3SO3H-Ti3C2Tx MXene nanosheets had high colloidal stability, making them promising as efficient electrocatalysts for the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Feng Tian
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuewen Xia
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shujuan Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Xing Yu
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yufeng Zhao
- Institute of Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shen Hu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Li Ji
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
9
|
Wang X, Li Z, Sun S, Sun H, Yang C, Cai Z, Zhang H, Yue M, Zhang M, Wang H, Yao Y, Liu Q, Li L, Chu W, Hu J, Sun X, Tang B. Oxalate anions-intercalated NiFe layered double hydroxide as a highly active and stable electrocatalyst for alkaline seawater oxidation. J Colloid Interface Sci 2024; 662:596-603. [PMID: 38367577 DOI: 10.1016/j.jcis.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl-) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-C2O42- LDH/NF) is proposed. The intercalation of these highly negatively charged C2O42- serves to establish electrostatic repulsion and impede Cl- adsorption. In alkaline seawater, NiFe-C2O42- LDH/NF requires an overpotential of 337 mV to gain the large current density of 1000 mA cm-2 and operates continuously for 500 h. The intercalation of C2O42- is demonstrated to significantly boost the activity and stability of NiFe LDH-based materials during alkaline seawater oxidation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, Chongqing, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hang Sun
- Department of Science and Environmental Studies, Faculty of Liberal Arts and Social Science, The Education University of Hong Kong, Hong Kong 999077, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Meng Yue
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hefeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jianming Hu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, Chongqing, China.
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Laoshan Laboratory, Qingdao 266237, Shandong, China.
| |
Collapse
|
10
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
11
|
Liu H, Miao J, Wang Y, Chen S, Tang Y, Zhu D. Heterostructured ZnFe 2O 4@Ni 3S 2 nanosheet arrays on Ni foam as an efficient oxygen evolution catalyst. Chem Commun (Camb) 2024; 60:4443-4446. [PMID: 38563566 DOI: 10.1039/d4cc00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Honeycomb-like ZnFe2O4@Ni3S2 hierarchical nanosheet arrays on Ni foam (NF) were fabricated via a combined hydrothermal and electrodeposition method. The electrode exhibits high oxygen evolution reaction (OER) activity with low overpotentials of 254 mV at 10 mA cm-2 and 290 mV at 50 mA cm-2, a small Tafel slope of 39.29 mV dec-1 and excellent durability in an alkaline electrolyte.
Collapse
Affiliation(s)
- Haiqing Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Juhong Miao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yubin Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Siyu Chen
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yujia Tang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
12
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Ju X, He X, Sun Y, Cai Z, Sun S, Yao Y, Li Z, Li J, Wang Y, Ren Y, Ying B, Luo Y, Zheng D, Liu Q, Xie L, Li T, Sun X, Tang B. Fabrication of a hierarchical NiTe@NiFe-LDH core-shell array for high-efficiency alkaline seawater oxidation. iScience 2024; 27:108736. [PMID: 38269101 PMCID: PMC10805641 DOI: 10.1016/j.isci.2023.108736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Herein, a hierarchical NiTe@NiFe-LDH core-shell array on Ni foam (NiTe@NiFe-LDH/NF) demonstrates its effectiveness for oxygen evolution reaction (OER) in alkaline seawater electrolyte. This NiTe@NiFe-LDH/NF array showcases remarkably low overpotentials of 277 mV and 359 mV for achieving current densities of 100 and 500 mA cm-2, respectively. Also, it shows a low Tafel slope of 68.66 mV dec-1. Notably, the electrocatalyst maintains robust stability over continuous electrolysis for at least 50 h at 100 mA cm-2. The remarkable performance and hierarchical structure advantages of NiTe@NiFe-LDH/NF offer innovative insights for designing efficient seawater oxidation electrocatalysts.
Collapse
Affiliation(s)
- Xuexuan Ju
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yuntong Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
- Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Wang M, Du Y, Li S, Sun X, Li B, Gu Y, Wang L. Developing energy-efficient N-doping technology to controllably construct N-Ru 2P@Ru nanospheres for highly efficient hydrogen evolution at an ampere-level current density. MATERIALS HORIZONS 2023; 10:5712-5719. [PMID: 37795798 DOI: 10.1039/d3mh01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The N-doping strategy plays a vital role in optimizing electrocatalytic performance, but it often requires high-temperatures accompanied by the emission of irritating gases, which is contrary to the concept of energy saving and environmental protection. Based on this, this work innovatively uses the quenching of waste heat and the non-equilibrium state of materials to realize controllable N-doping. Notably, N dopants stimulate metal-like electroconductivity and accelerate the alkaline HER kinetics by optimizing the electronic structure of Ru2P. Surprisingly, the hydrophilic Ru core and the N-Ru2P shell with a low HER reaction energy barrier synergistically expedite hydrogen release. As anticipated, the current density of N-Ru2P@Ru (963 mA cm-2) is 2.6-fold that of Pt/C (359 mA cm-2) at 150 mV. Overall, the novel N-doping technology greatly simplifies material preparation procedures and reduces energy consumption. Moreover, this unique N-doping strategy provides a new idea for optimizing the catalyst structure and reaction kinetics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yunmei Du
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuangshuang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiaoli Sun
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao 266042, P. R. China
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuanxiang Gu
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lei Wang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
15
|
Yao Y, Yang C, Sun S, Zhang H, Geng M, He X, Dong K, Luo Y, Zheng D, Zhuang W, Alfaifi S, Farouk A, Hamdy MS, Tang B, Zhu S, Sun X, Hu WW. Boosting Alkaline Seawater Oxidation of CoFe-layered Double Hydroxide Nanosheet Array by Cr Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307294. [PMID: 37963858 DOI: 10.1002/smll.202307294] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Indexed: 11/16/2023]
Abstract
The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2 .
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meiqi Geng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sulaiman Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shuyun Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
16
|
Li J, Wu N, Zhang J, Wu HH, Pan K, Wang Y, Liu G, Liu X, Yao Z, Zhang Q. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:227. [PMID: 37831203 PMCID: PMC10575847 DOI: 10.1007/s40820-023-01192-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
Abstract
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, People's Republic of China
| | - Hong-Hui Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 8588, USA.
| | - Kunming Pan
- Henan Key Laboratory of High-Temperature Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Yingxue Wang
- National Engineering Laboratory for Risk Perception and Prevention, Beijing, 100041, People's Republic of China.
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China.
| | - Zhenpeng Yao
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200000, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200000, People's Republic of China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
17
|
Zhang X, Li Z, Cai Z, Li J, Zhang L, Zheng D, Luo Y, Sun S, Liu Q, Tang B, Yang Y, Wang H, Sun X. Hierarchical CoS 2@NiFe-LDH as an efficient electrocatalyst for alkaline seawater oxidation. Chem Commun (Camb) 2023; 59:11244-11247. [PMID: 37656429 DOI: 10.1039/d3cc03457g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing earth-abundant non-noble electrocatalysts with high performance is significant but challenging for the oxygen evolution reaction (OER) in seawater. Herein, a hierarchical electrocatalyst, NiFe-layered double hydroxide (LDH) nanosheet anchored CoS2 nanowires supported on carbon cloth, is developed for efficient OER electrocatalysis in alkaline seawater, demanding a low overpotential of 256 mV to drive a current density of 100 mA cm-2, along with favorable catalytic durability for at least 48 h with negligible decay.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| | - Huiqing Wang
- Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
18
|
Cui Z, Jiao W, Huang Z, Chen G, Zhang B, Han Y, Huang W. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301465. [PMID: 37186069 DOI: 10.1002/smll.202301465] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Hydrogen energy is regarded as the ultimate energy source for future human society, and the preparation of hydrogen from water electrolysis is recognized as the most ideal way. One of the key factors to achieve large-scale hydrogen production by water splitting is the availability of highly active and stable electrocatalysts. Although non-precious metal electrocatalysts have made great strides in recent years, the best hydrogen evolution reaction (HER) electrocatalysts are still based on noble metals. Therefore, it is particularly important to improve the overall activity of the electrocatalysts while reducing the noble metals load. Alloying strategies can shoulder the burden of optimizing electrocatalysts cost and improving electrocatalysts performance. With this in mind, recent work on the application of noble metal-based alloy electrocatalysts in the field of hydrogen production from water electrolysis is summarized. In this review, first, the mechanism of HER is described; then, the current development of synthesis methods for alloy electrocatalysts is presented; finally, an example analysis of practical application studies on alloy electrocatalysts in hydrogen production is presented. In addition, at the end of this review, the prospects, opportunities, and challenges facing noble metal-based alloy electrocatalysts are tried to discuss.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - ZeYi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Biao Zhang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South 9th Avenue, Gao Xin, Shenzhen, Guangdong, 518057, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
19
|
Shi S, Sun S, He X, Zhang L, Zhang H, Dong K, Cai Z, Zheng D, Sun Y, Luo Y, Liu Q, Ying B, Tang B, Sun X, Hu W. Improved Electrochemical Alkaline Seawater Oxidation over Cobalt Carbonate Hydroxide Nanowire Array by Iron Doping. Inorg Chem 2023. [PMID: 37449955 DOI: 10.1021/acs.inorgchem.3c01473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.
Collapse
Affiliation(s)
- Shaorui Shi
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Xun He
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yuntong Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Wenchuang Hu
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
20
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, He C, Wu C, Liu X, Luo X, Li S, Cheng C, Zhao C. Electronic Structure-Dependent Water-Dissociation Pathways of Ruthenium-Based Catalysts in Alkaline H 2 -Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206949. [PMID: 36599619 DOI: 10.1002/smll.202206949] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Chao He
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
21
|
Tian W, Li L, Zhu G. Interface Engineering of Oxygen-Vacancy-Rich VO-NiFe2O4@Ni2P Heterostructure for Highly Efficient Oxygen Evolution Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-023-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
22
|
Ahmed F, Almutairi G, Hasan PMZ, Rehman S, Kumar S, Shaalan NM, Aljaafari A, Alshoaibi A, AlOtaibi B, Khan K. Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries. MICROMACHINES 2023; 14:mi14010192. [PMID: 36677253 PMCID: PMC9863765 DOI: 10.3390/mi14010192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/01/2023]
Abstract
Porous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon. The prepared activated carbon possessed a carbon structure with a certain degree of amorphousness. The morphology of the activated carbon was of spherical shape with a particle size of ~40-90 nm. Raman studies revealed the characteristic peaks of carbon present in the prepared activated carbon. The electrochemical studies evaluated for the fabricated coin cell with the activated carbon anode showed that the cell delivered a discharge capacity of ~321 mAhg-1 at a current density of 100 mAg-1 for the first cycle, and maintained a capacity of ~253 mAhg-1 for 400 cycles. The capacity retention was found to be higher (~81%) with 92.3% coulombic efficiency even after 400 cycles, which showed excellent cyclic reversibility and stability compared to commercial activated carbon. These results allow the waste biomass-derived anode to overcome the problem of cyclic stability and capacity performance. This study provides an insight for the fabrication of anodes from the rice husk which can be redirected into creating valuable renewable energy storage devices in the future, and the product could be a socially and ethically acceptable product.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ghazzai Almutairi
- National Center for Energy Storage Technologies, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Prince M. Z. Hasan
- Center of Nanotechnology, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Sarish Rehman
- Chemistry Department, McGill University, 801 Sherbrooke St. W, Montreal, QC H3A 0B8, Canada
| | - Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdullah Aljaafari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Bandar AlOtaibi
- National Center for Energy Storage Technologies, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Kaffayatullah Khan
- Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
23
|
Shi Z, Ge Y, Yun Q, Zhang H. Two-Dimensional Nanomaterial-Templated Composites. Acc Chem Res 2022; 55:3581-3593. [DOI: 10.1021/acs.accounts.2c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Tat Chee Avenue, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Tat Chee Avenue, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Tat Chee Avenue, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Tat Chee Avenue, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Tat Chee Avenue, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
24
|
Huang Y, Zhou W, Kong W, Chen L, Lu X, Cai H, Yuan Y, Zhao L, Jiang Y, Li H, Wang L, Wang L, Wang H, Zhang J, Gu J, Fan Z. Atomically Interfacial Engineering on Molybdenum Nitride Quantum Dots Decorated N-doped Graphene for High-Rate and Stable Alkaline Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204949. [PMID: 36285692 PMCID: PMC9799021 DOI: 10.1002/advs.202204949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is a key challenge in water electrolysis. Here, an interfacial engineering strategy that is capable of simultaneously regulating nanoscale structure, electronic structure, and interfacial structure of Mo2 N quantum dots decorated on conductive N-doped graphene via codoping single-atom Al and O (denoted as AlO@Mo2 N-NrGO) is reported. The conversion of Anderson polyoxometalates anion cluster ([AlMo6 O24 H6 ]3- , denoted as AlMo6) to Mo2 N quantum dots not only result in the generation of more exposed active sites but also in situ codoping atomically dispersed Al and O, that can fine-tune the electronic structure of Mo2 N. It is also identified that the surface reconstruction of AlOH hydrates in AlO@Mo2 N quantum dots plays an essential role in enhancing hydrophilicity and lowering the energy barriers for water dissociation and hydrogen desorption, resulting in a remarkable alkaline HER performance, even better than the commercial 20% Pt/C. Moreover, the strong interfacial interaction (MoN bonds) between AlO@Mo2 N and N-doped graphene can significantly improve electron transfer efficiency and interfacial stability. As a result, outstanding stability over 300 h at a current density higher than 100 mA cm-2 is achieved, demonstrating great potential for the practical application of this catalyst.
Collapse
Affiliation(s)
- Yichao Huang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Wenbo Zhou
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Weichao Kong
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lulu Chen
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Xiaolong Lu
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hanqing Cai
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Yongrui Yuan
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lianming Zhao
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Yangyang Jiang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Haitao Li
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Limin Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Lin Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hang Wang
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| | - Jiangwei Zhang
- College of Energy Material and ChemistryCollege of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
| | - Jing Gu
- Department of Chemistry and BiochemistrySan Diego State University5500 Campanile DriveSan DiegoCA92182‐1030USA
| | - Zhuangjun Fan
- State Key Laboratory of Heavy Oil ProcessingSchool of Materials Science and EngineeringChina University of PetroleumQingdaoShandong266580P. R. China
| |
Collapse
|
25
|
Yang X, Shi Y, Xie K, Fang S, Zhang Y, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Approach to Synthesize Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022; 61:e202207816. [DOI: 10.1002/anie.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xuanyu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yatong Shi
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Kefeng Xie
- College of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Shaoming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Deng
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
- School of Materials and Chemistry University of Shanghai for Science & Technology Shanghai 200093 P. R. China
| |
Collapse
|
26
|
Chen D, Lu R, Yu R, Dai Y, Zhao H, Wu D, Wang P, Zhu J, Pu Z, Chen L, Yu J, Mu S. Work-function-induced Interfacial Built-in Electric Fields in Os-OsSe 2 Heterostructures for Active Acidic and Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202208642. [PMID: 35822462 DOI: 10.1002/anie.202208642] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/16/2022]
Abstract
Theoretical calculations unveil that the formation of Os-OsSe2 heterostructures with neutralized work function (WF) perfectly balances the electronic state between strong (Os) and weak (OsSe2 ) adsorbents and bidirectionally optimizes the hydrogen evolution reaction (HER) activity of Os sites, significantly reducing thermodynamic energy barrier and accelerating kinetics process. Then, heterostructural Os-OsSe2 is constructed for the first time by a molten salt method and confirmed by in-depth structural characterization. Impressively, due to highly active sites endowed by the charge balance effect, Os-OsSe2 exhibits ultra-low overpotentials for HER in both acidic (26 mV @ 10 mA cm-2 ) and alkaline (23 mV @ 10 mA cm-2 ) media, surpassing commercial Pt catalysts. Moreover, the solar-to-hydrogen device assembled with Os-OsSe2 further highlights its potential application prospects. Profoundly, this special heterostructure provides a new model for rational selection of heterocomponents.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruohan Yu
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuhang Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Dulan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
27
|
Yang X, Shi Y, Xie K, Fang S, Zhang YH, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Gives Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuanyu Yang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yatong Shi
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Kefeng Xie
- Lanzhou Jiaotong University School of Chemical and Biological Engineering CHINA
| | - Shaoming Fang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yong-Hui Zhang
- Zhengzhou University of Light Industry 5 Dongfeng Road zhengzhou CHINA
| | | |
Collapse
|
28
|
Chen D, Lu R, Yu R, Dai Y, Zhao H, Wu D, Wang P, Zhu J, Pu Z, Chen L, Yu J, Mu S. Work‐function‐induced Interfacial Built‐in Electric Fields in Os‐OsSe2 Heterostructures for Active Acidic and Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ding Chen
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Ruihu Lu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Ruohan Yu
- Wuhan University of Technology NRC CHINA
| | - Yuhang Dai
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Hongyu Zhao
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Dulan Wu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Pengyan Wang
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Jiawei Zhu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Zonghua Pu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Lei Chen
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Jun Yu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Shichun Mu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processi 122 Luoshi Road, State Lab, Wuhan Univsersity of Technology 430070 Wuhan CHINA
| |
Collapse
|
29
|
Jin H, Yu H, Li H, Davey K, Song T, Paik U, Qiao SZ. MXene Analogue: A 2D Nitridene Solid Solution for High-Rate Hydrogen Production. Angew Chem Int Ed Engl 2022; 61:e202203850. [PMID: 35437873 PMCID: PMC9322295 DOI: 10.1002/anie.202203850] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 01/07/2023]
Abstract
Electrocatalysts for high‐rate hydrogen evolution reaction (HER) are crucial to clean fuel production. Nitrogen‐rich 2D transition metal nitride, designated “nitridene”, has shown promising HER performance because of its unique physical/chemical properties. However, its synthesis is hindered by the sluggish growth kinetics. Here for the first time using a catalytic molten‐salt method, we facilely synthesized a V−Mo bimetallic nitridene solid solution, V0.2Mo0.8N1.2, with tunable electrocatalytic property. The molten‐salt synthesis reduces the growth barrier of V0.2Mo0.8N1.2 and facilitates V dissolution via a monomer assembly, as confirmed by synchrotron spectroscopy and ex situ electron microscopy. Furthermore, by merging computational simulations, we confirm that the V doping leads to an optimized electronic structure for fast protons coupling to produce hydrogen. These findings offer a quantitative engineering strategy for developing analogues of MXenes for clean energy conversions.
Collapse
Affiliation(s)
- Huanyu Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,Institute for Sustainability, Energy and Resources, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huimin Yu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Haobo Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Taeseup Song
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ungyu Paik
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|