1
|
Ma F, Wu B, Zhang S, Jiang J, Shi J, Ding Z, Zhang Y, Tan H, Alam P, Lam JWY, Xiong Y, Li Z, Tang BZ, Zhao Z. Lone Pairs-Mediated Multiple Through-Space Interactions for Efficient Room-Temperature Phosphorescence. J Am Chem Soc 2025; 147:10803-10814. [PMID: 40099863 DOI: 10.1021/jacs.5c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The simultaneous generation and stabilization of triplet excitons are the key to realizing efficient organic room temperature phosphorescence (RTP), which is challenging owing to the obscure mechanism and structure-property relationships. Herein, a strategy of lone-pair-mediated multiple through-space interactions (TSIs) is proposed to availably induce RTP. By incorporating heteroatoms to facilitate through-space n-n and n-π interactions, the lone pairs are delocalized throughout the structure, resulting in the dense splitting of the excited-state energy levels. Thus, more matched energy levels with a small energy gap between singlet and triplet states (ΔEST) emerge, resulting in multiple intersystem crossing (ISC) transition channels that assist triplet excitons generation. The strong TSIs also effectively rigidify the molecular structures and thus stabilize triplet excitons for radiation. Furthermore, the manipulation of TSI intensity allows efficiency enhancement, persistent time prolongation, and tolerance to high temperatures of RTP. This work not only explores the fundamental principle of the RTP mechanism from a new view but also provides a universal strategy for ISC promotion and triple excitons stabilization.
Collapse
Affiliation(s)
- Fulong Ma
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Bo Wu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Siwei Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jinhui Jiang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jinghong Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zeyang Ding
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yue Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Parvej Alam
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
2
|
Molkenthin M, Hupf E, Nachtsheim BJ. Dibenzyl isophthalates as versatile hosts in room temperature phosphorescence host-guest systems. Chem Sci 2025; 16:2819-2829. [PMID: 39811010 PMCID: PMC11726582 DOI: 10.1039/d4sc07768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
We report a series of dibenzyl isophthalates (DBIs) as novel hosts for room-temperature phosphorescence (RTP) host-guest systems, achieving RTP quantum yields (QY) of up to 77% or lifetimes of up to 21.0 s with the guest coronene-d 12. Furthermore, a 4,4'-Br substituted DBI was used to form host-guest RTP systems with 15 different aromatic guest molecules, to tune the phosphorescence emission color from blue to red and to demonstrate the versatility of the host. Mechanistic insights were gained through a host-guest-matrix system which shows RTP by trace combinations of a 4,4'-Br DBI host (0.10 wt%) and a pyrene-d 10 guest (0.01 wt%) in an otherwise non-RTP-emissive aromatic matrix. This work establishes DBIs as readily available and versatile, tunable hosts for RTP host-guest systems, posing an alternative to polymeric hosts.
Collapse
Affiliation(s)
- Martin Molkenthin
- University of Bremen, Institute for Organic and Analytical Chemistry 28359 Bremen Germany
| | - Emanuel Hupf
- University of Bremen, Institute of Inorganic Chemistry and Crystallography 28359 Bremen Germany
| | - Boris J Nachtsheim
- University of Bremen, Institute for Organic and Analytical Chemistry 28359 Bremen Germany
| |
Collapse
|
3
|
Barman D, Rajamalli P, Bidkar AP, Sarmah T, Ghosh SS, Zysman-Colman E, Iyer PK. Modulation of Donor in Purely Organic Triplet Harvesting AIE-TADF Photosensitizer for Image-guided Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409533. [PMID: 39780649 DOI: 10.1002/smll.202409533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively. Further, different donor strengths and unique aggregations (H-, J- and X-type packings) greatly influence their color-tunable up-converted luminescence and endow them with superb dispersibility in water. The confocal microscopy-based cellular uptake study confirms the successful internalization of the nano-probes, while BTMCz enables the generation of reactive oxygen species (singlet oxygen) under white-light irradiation, enabling the efficient killing of cancer cells.
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Anil Parsram Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
| | - Tapashi Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
4
|
Zhang M, Lan X, Ding M, Han C, Liu XW, Meng Z, Yu ZQ, An Z. Dynamic Organic Phosphorescence Glass by Rigid-Soft Coupling. Angew Chem Int Ed Engl 2025; 64:e202415250. [PMID: 39301990 DOI: 10.1002/anie.202415250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Organic phosphorescence glass has garnered considerable attention owing to the excellent shaping ability and photophysical behavior, but facile construction from single-component phosphors is still challenging. Herein, a rigid-soft coupling design is adopted in organic phosphors of ICO, CCO and PCO, thus preparing phosphorescence glasses through melting-quenching method to give excellent shaping ability and dynamic phosphorescence. RTP performance is significantly enhanced in the dense-structure glass, and intriguing high-temperature phosphorescence (HTP) is still observable even at 400 K. Direct patterning under UV irradiation is also achieved using photolithography technique, allowing for the creation of high-quality afterglow patterns that can be reversibly erased and rewritten. This rigid-soft conformation in organic phosphors elucidates a promising concept for achieving efficient RTP glass with wide application prospects.
Collapse
Affiliation(s)
- Meng Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaohui Lan
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Meijuan Ding
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chaoyi Han
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xing Wang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhengong Meng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhongfu An
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
5
|
Wu L, Holzapfel M, Schmiedel A, Peng F, Moos M, Mentzel P, Shi J, Neubert T, Bertermann R, Finze M, Fox MA, Lambert C, Ji L. Optically induced charge-transfer in donor-acceptor-substituted p- and m- C 2B 10H 12 carboranes. Nat Commun 2024; 15:3005. [PMID: 38589381 PMCID: PMC11001991 DOI: 10.1038/s41467-024-47384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Icosahedral carboranes, C2B10H12, have long been considered to be aromatic but the extent of conjugation between these clusters and their substituents is still being debated. m- and p-Carboranes are compared with m- and p-phenylenes as conjugated bridges in optical functional chromophores with a donor and an acceptor as substituents here. The absorption and fluorescence data for both carboranes from experimental techniques (including femtosecond transient absorption, time-resolved fluorescence and broadband fluorescence upconversion) show that the absorption and emission processes involve strong intramolecular charge transfer between the donor and acceptor substituents via the carborane cluster. From quantum chemical calculations on these carborane systems, the charge transfer process depends on the relative torsional angles of the donor and acceptor groups where an overlap between the two frontier orbitals exists in the bridging carborane cluster.
Collapse
Affiliation(s)
- Lin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Fuwei Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Thomas Neubert
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mark A Fox
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
6
|
Hayashi K, Hirata S. High-Resolution Afterglow Patterning Using Cooperative Vapo- and Photo-Stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308103. [PMID: 38018335 DOI: 10.1002/smll.202308103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Indexed: 11/30/2023]
Abstract
Bright afterglow room-temperature phosphorescence (RTP) soon after ceasing excitation is a promising technique for greatly increasing anti-counterfeiting capabilities. The development of a process for rapid high-resolution afterglow patterning of crystalline materials can improve both high-speed fabrication of anti-counterfeiting afterglow media and stable afterglow readout compared with those achieved with amorphous materials. Here, the high-resolution afterglow patterning of crystalline materials via cooperative organic vapo- and photo-stimulation is reported. A single crystal of (S)-(-)-2,2'-bis(diphenylphosphino)-5,5',6,6',7,7'8,8'-octahydro-1,1'-binaphthyl [(S)-H8-BINAP] doped with (S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP] shows green afterglow RTP. Crystals of (S)-BINAP-doped (S)-H8-BINAP changed to an amorphous state with no afterglow capability on weak continuous photoirradiation under dichloromethane (DCM) vapor. Photoirradiation induced oxidation of the (S)-H8-BINAP host molecule in the crystal. The oxidized (S)-H8-BINAP forms on the crystal surface strongly interacted with DCM molecules, which induces melting of the (S)-BINAP-doped (S)-H8-BINAP crystal and trigger formation of an amorphous state without an afterglow capability. High-resolution afterglow patterning of the crystalline film is rapidly achieved by using cooperative organic vapo- and photo-stimulation. In addition to the benefit of rapid afterglow patterning, the formed afterglow images of the crystalline film can be repeatedly read out under ambient conditions without DCM vapor.
Collapse
Affiliation(s)
- Kikuya Hayashi
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzo Hirata
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
7
|
Xie Z, Liu D, Zhao Z, Gao C, Wang P, Jiang C, Liu X, Zhang X, Ren Z, Yan S, Hu W, Dong H. High Mobility Emissive Excimer Organic Semiconductor Towards Color-Tunable Light-Emitting Transistors. Angew Chem Int Ed Engl 2024; 63:e202319380. [PMID: 38246876 DOI: 10.1002/anie.202319380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.
Collapse
Grants
- 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology
- 52233010, 52103245, 61890943, 22021002, 51725304 and 22305252 Innovative Research Group Project of the National Natural Science Foundation of China
- YSBR-053 Training Program for Excellent Young Innovators of Changsha
- 2023YFB3609000, 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology of China
- 52233010, 52103245, 22021002, and 22305252 Natural Science Foundation of China
- YSBR-053 CAS Project for Young Scientists in Basic Research
- BNLMS-CXXM-202012 Beijing National Laboratory for Molecular Sciences
- 2023M733555 China Postdoctoral Science Foundation
- GZB20230771 Postdoctoral Fellowship Program of CPSF
Collapse
Affiliation(s)
- Ziyi Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Qiao W, Yao M, Xu J, Peng H, Xia J, Xie X, Li Z. Naphthyl Substituted Impurities Induce Efficient Room Temperature Phosphorescence. Angew Chem Int Ed Engl 2023; 62:e202315911. [PMID: 37905301 DOI: 10.1002/anie.202315911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
Accidentally, it was found that triphenylamine (TPA) from commercial sources shows ultralong yellow-green room temperature phosphorescence (RTP) like commercial carbazole, which however disappears for lab-synthesized TPA with high purity. Herein, we for the first time identify the impurity types that cause RTP of commercial TPA, which are two N, N-diphenyl-naphthylamine isomers. Due to similar molecular polarity and very trace amount (≈0.8 ‰, molar ratio), these naphthyl substituted impurities can be easily overlooked. We further show that even at an extremely low amount (1000000 : 1, mass ratio) of impurities, RTP emission is still generated, attributed to the triplet-to-triplet energy transfer mechanism. Notably, this doping strategy is also applicable to the triphenylphosphine and benzophenone host systems, of which strong RTP emission can be activated by simply doping the corresponding naphthyl substituted analogues into them. This work therefore provides a general and efficient host/guest strategy toward high performance and diverse organic RTP materials.
Collapse
Affiliation(s)
- Weiguo Qiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Yao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingwen Xu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Badriyah EH, Hayashi K, Sk B, Takano R, Ishida T, Hirata S. Continuous Condensed Triplet Accumulation for Irradiance-Induced Anticounterfeit Afterglow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304374. [PMID: 37897314 PMCID: PMC10754144 DOI: 10.1002/advs.202304374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Indexed: 10/30/2023]
Abstract
Afterglow room-temperature emission that is independent of autofluorescence after ceasing excitation is a promising technology for state-of-the-art bioimaging and security devices. However, the low brightness of the afterglow emission is a current limitation for using such materials in a variety of applications. Herein, the continuous formation of condensed triplet excitons for brighter afterglow room-temperature phosphorescence is reported. (S)-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl ((S)-BINAP) incorporated in a crystalline host lattice showed bright green afterglow room-temperature phosphorescence under strong excitation. The small triplet-triplet absorption cross-section of (S)-BINAP in the whole range of visible wavelengths greatly suppressed the deactivation caused by Förster resonance energy transfer from excited states of (S)-BINAP to the accumulated triplet excitons of (S)-BINAP under strong continuous excitation. The steady-state concentration of the triplet excitons for (S)-BINAP reached 2.3 × 10-2 M, producing a bright afterglow. Owing to the brighter afterglow, afterglow detection using individual particles with sizes approaching the diffraction limit in aqueous conditions and irradiance-dependent anticounterfeiting can be achieved.
Collapse
Affiliation(s)
- Ende Hopsah Badriyah
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Kikuya Hayashi
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Rina Takano
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Takayuki Ishida
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| |
Collapse
|
10
|
Si C, Wang T, Gupta AK, Cordes DB, Slawin AMZ, Siegel JS, Zysman‐Colman E. Room-Temperature Multiple Phosphorescence from Functionalized Corannulenes: Temperature Sensing and Afterglow Organic Light-Emitting Diode. Angew Chem Int Ed Engl 2023; 62:e202309718. [PMID: 37656606 PMCID: PMC10953377 DOI: 10.1002/anie.202309718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1 ; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1 H ) and a lower-lying T1 (T1 L ) can be observed, while for TPXZPhCor, T1 H -dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1 H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax ) and a luminance (Lmax ) of 3.3 % and 5167 cd m-2 , respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.
Collapse
Affiliation(s)
- Changfeng Si
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Tao Wang
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - David B. Cordes
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Alexandra M. Z. Slawin
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Jay S. Siegel
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Institute of Organic ChemistryAlbert Ludwig University of FreiburgAlbertstr. 2179104Freiburg
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| |
Collapse
|
11
|
Zhou Q, Ren G, Yang Y, Wang C, Che G, Li M, Yu MH, Li J, Pan Q. Fluorescence Thermometers Involving Two Ranges of Temperature: Coordination Polymer and DMSP Embedding. Inorg Chem 2023; 62:16652-16658. [PMID: 37737727 DOI: 10.1021/acs.inorgchem.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The measurement of temperature is indispensable in the fields of life, science, and industry. Fluorescence thermometers are attractive to researchers because of their advantages such as noncontact, high sensitivity, fast response, and excellent anti-interference. Here, a new coordination polymer (HNU-76) was synthesized by assembling Zn2+ with the H3TCA ligand, a fluorescent molecule with an AIE behavior, which can be used as a fluorescence thermometer. At 100-210 K, the fluorescence intensity ratio of HNU-76 versus temperature conforms to an Arrhenius-type decay relationship (R2 = 0.997), which can be the candidate for low-temperature sensing. In order to increase the sensing range, 4-[4-(dimethylamino)styryl] pyndine (DMSP) was successfully embedded on HNU-76, obtaining HNU-76⊃DMSP. The fluorescence intensity of HNU-76⊃DMSP conforms to an Arrhenius-type decay relationship (R2 = 0.997) at 270-360 K versus temperature. HNU-76 can be used for fluorescence detection at low temperatures, due to the DMSP loading, and HNU-76⊃DMSP can serve as the temperature thermometer in a range of temperatures common. Both materials show good cyclability and have the potential to be used in fluorescence thermometers.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yonghang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
12
|
Ma L, Liu Y, Tian H, Ma X. Switching Singlet Exciton to Triplet for Efficient Pure Organic Room-Temperature Phosphorescence by Rational Molecular Design. JACS AU 2023; 3:1835-1842. [PMID: 37502164 PMCID: PMC10369410 DOI: 10.1021/jacsau.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The design and regulation of phosphors are attractive but challenging because of the spin-forbidden intersystem crossing (ISC) process. Here, a new perspective on the enhancement of the ISC is proposed and demonstrated. Different from current strategies, the ISC yield (ΦISC) is enhanced by decreasing the fluorescence radiative transition rate constant (kF) via rational molecular designing rather than boosting the spin-orbit coupling by decorating the molecular skeleton with a heavy atom, heteroatom, or carbonyl. The kF of the designed molecule in this case is associated with the substituent position of the methoxy group, which alters the distribution of the front orbitals. The S0 → S1 transition of these compounds evolves from a bright state to a dark state gradually with the variation of the substituent position, accompanied by the decrease of kF and increase of ΦISC. The fluorescence emission is switched to phosphorescence emission successfully by regulating the kF. This work provides an alternative strategy to design efficient room-temperature phosphorescence material.
Collapse
|
13
|
Yue S, Ding H, Sun Y, Tang M, Wen J, Peng Y, Zheng L, Wang F, Shi Y, Cao Q. Simple Stimulus-Responsive Organic Long Persistent Luminescence Systems Based on Methoxy-Functionalized Triphenylphosphine. J Phys Chem Lett 2022; 13:10190-10197. [PMID: 36281994 DOI: 10.1021/acs.jpclett.2c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triarylphosphine-based pure organic long persistent luminescence materials are rarely investigated because of their poor stability and low photoluminescence quantum yield. Herein, we demonstrate that the introduction of a methoxy group (TPP-o-3OMe) at the ortho position of triphenylphosphine (TPP) can essentially promote the n → π* transition and promote intersystem crossing to generate more triplet excitons. Simultaneously, generating abundant intramolecular and intermolecular hydrogen bonds to stable excited triplet excitons is beneficial, thereby causing high-efficiency phosphorescence emission (τp = 394.1 ms; Φp = 9.28%). Interestingly, it shows a good acid response to protonic acids and can often be cycled many times under the heating or ammonia fumigation conditions. This research provides a new idea for enriching the types of pure organic room-temperature phosphorescent materials, widening their applications in the fields of anticounterfeiting and smart response, and promotes the further development of this field.
Collapse
Affiliation(s)
- Shiwen Yue
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Huangting Ding
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Yitong Sun
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Meng Tang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jingyi Wen
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ye Peng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yonggang Shi
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
14
|
Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed Engl 2022; 61:e202211106. [DOI: 10.1002/anie.202211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Davin Tan
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Kai Wang
- State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 P. R. China
| | - Yangtao Shao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| |
Collapse
|
15
|
Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rongrong Huang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chao Wang
- Singapore University of Technology and Design Science, Math and Technology SINGAPORE
| | - Davin Tan
- Singapore University of Technology and Design Science, Math and Technology SINGAPORE
| | - Kai Wang
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Bo Zou
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Yangtao Shao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Taihong Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haonan Peng
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xiaogang Liu
- Singapore University of Technology and Design 8 Somapah Road487372Singapore 487372 Singapore SINGAPORE
| | - Yu Fang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|