1
|
Li D, Wu S, Yan J, Zhao D, Li Q, Li R, Fan G. Nickel-cobalt alloy nanosheet-decorated three-dimensional titanium dioxide nanobelts electrodeposited on titanium meshes for boosting selective nitrate electroreduction to ammonia. J Colloid Interface Sci 2025; 677:853-861. [PMID: 39173517 DOI: 10.1016/j.jcis.2024.08.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction presents a promising avenue for environmentally friendly ammonia (NH3) synthesis and wastewater treatment. An essential aspect to consider is the meticulous design of electrocatalysts. This study explores the utilization of a Ni-Co alloy nanosheet-decorated three-dimensional titanium dioxide (3D-TiO2) nanobelts electrodeposited on titanium meshes (NixCoy@TiO2/TM) for efficient electrocatalytic NH3 production. The optimized Ni1Co3@TiO2/TM electrode achieves a significant NH3 yield of 676.3 ± 27.1 umol h-1 cm-2 with an impressive Faradaic efficiency (FE) of 95.1 % ± 2.1 % in a 0.1 M KOH solution containing 0.1 M NO3- at -0.4 V versus the reversible hydrogen electrode. Additionally, the electrode demonstrates exceptional electrochemical activity for NH3 synthesis in simulated wastewater, delivering an outstanding NH3 yield of 751.6 ± 44.3 umol h-1 cm-2 with a FE of 96.8 % ± 0.4 % at the same potential of -0.4 V. Moreover, the electrode exhibits minimal variation in current density, NH3 yields and FEs throughout the 24-h stability test and the 20-cycle test, demonstrating its excellent stability and durability. This study offers a straightforward electrodeposited approach for the development of 3D-nanostructured alloys as catalysts for NH3 electrosynthesis from nitrates at room temperature.
Collapse
Affiliation(s)
- Dandan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jingwen Yan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Donglin Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ruizhi Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
2
|
Zhu J, Cui T, Chi J, Wang T, Guo L, Liu X, Wu Z, Lai J, Wang L. Frustrated Lewis Pair Mediated f-p-d Orbital Coupling: Achieving Selective Seawater Oxidation and Breaking *OH and *OOH Scaling Relationship. Angew Chem Int Ed Engl 2024:e202414721. [PMID: 39392202 DOI: 10.1002/anie.202414721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The development of oxygen evolution reaction (OER) electrocatalyst for seawater electrolysis plays a crucial role in producing renewable hydrogen energy. However, during the seawater electrolysis process, the anode inevitably undergoes chloride oxidation reaction (ClOR) due to Cl- adsorption, making the seawater electrolysis process difficult to sustain. Inspired by the selective permeability of cell membranes, we propose a biomimetic design of frustrated Lewis pairs (FLPs) layers for selective seawater oxidation. Combining experimental results and molecular dynamics simulations, it has been demonstrated that cerium dioxide layers with FLPs sites can decompose water molecules, capture hydroxyl anions, and repel chloride ions simultaneously. DFT theoretical analysis indicates that the FLP sites regulate the Ce 4 f-O 2p-Ni 3d gradient orbital coupling, providing additional oxygen non-bonding (ONB) to stabilize the Ni-O bond and optimize the adsorption strength of intermediates, thereby breaking the *OH and *OOH scaling relationship. The assembled anion exchange membrane electrolyzers exhibit an efficiency of 95.7 % at a current density of 0.1 A cm-2 and can stably operate for 250 hours at a current density of 0.2 A cm-2.
Collapse
Affiliation(s)
- Jiawei Zhu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| | - Tong Cui
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Chemical and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, Shandong, PR China
| | - Jingqi Chi
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| | - Tiantian Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| | - Lili Guo
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Chemical and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, Shandong, PR China
| | - Xiaobin Liu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China
| |
Collapse
|
3
|
Mu JJ, Gao XW, Zhao Z, Liu ZM, Gu Q, Luo WB. Electron Sponge Effect by Dynamic-Regulated Electron Self-Flow toward Coupled Electrochemical Ammonia Synthesis. ACS NANO 2024; 18:27090-27100. [PMID: 39294859 DOI: 10.1021/acsnano.4c11702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A dynamic-regulated Pd-Fe-N electrocatalyst was effectively constructed with electron-donating and back-donating effects, which serves as an efficient engineering strategy to optimize the electrocatalytic activity. The designed PdFe3/FeN features a comprehensive electrocatalytic performance toward the nitrogen reduction reaction (NRR, yield rate of 29.94 μg h-1 mgcat-1 and FE of 38.43% at -0.2 V vs RHE) and oxygen evolution reaction (OER, 308 mV at 100 mA cm-2). Combining in situ ATR-FTIR, XAS, and DFT results, the role of the interstitial-N-dopant-induced electron sponge effect has been significantly elucidated in strengthening the electrocatalytic NRR process. Specifically, the introduction of a N dopant, an electron acceptor, initiates the generation of robust Lewis-acidic Fe sites, facilitating free N2 capture and bonding. Simultaneously, after NH3 adsorption, the N dopant can back-donate electrons to Fe sites, strengthening the NH3 deportation through weakening the Lewis acidity of Fe centers. Besides, the electron-deficient Fe sites contribute to the reconstruction of FeOOH, the real active species during the OER, which accelerates the four-electron reaction kinetics. This research offers a perspective on electrocatalyst design, potentially facilitating the evolution of advanced material engineering for efficient electrocatalytic synthesis and energy storage.
Collapse
Affiliation(s)
- Jian-Jia Mu
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xuan-Wen Gao
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiwei Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhao-Meng Liu
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinfen Gu
- Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Wen-Bin Luo
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|
4
|
Wen L, Liu X, Li X, Zhang H, Zhong S, Zeng P, Shah SSA, Hu X, Cai W, Li Y. Hydrophobic Microenvironment Modulation of Ru Nanoparticles in Metal-Organic Frameworks for Enhanced Electrocatalytic N 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405210. [PMID: 38984453 PMCID: PMC11425667 DOI: 10.1002/advs.202405210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The modulation of the chemical microenvironment surrounding metal nanoparticles (NPs) is an effective means to enhance the selectivity and activity of catalytic reactions. Herein, a post-synthetic modification strategy is developed to modulate the hydrophobic microenvironment of Ru nanoparticles encapsulated in a metal-organic framework (MOF), MIP-206, namely Ru@MIP-Fx (where x represents perfluoroalkyl chain lengths of 3, 5, 7, 11, and 15), in order to systematically explore the effect of the hydrophobic microenvironment on the electrocatalytic activity. The increase of perfluoroalkyl chain length can gradually enhance the hydrophobicity of the catalyst, which effectively suppresses the competitive hydrogen evolution reaction (HER). Moreover, the electrocatalytic production rate of ammonia and the corresponding Faraday efficiency display a volcano-like pattern with increasing hydrophobicity, with Ru@MIP-F7 showing the highest activity. Theoretical calculations and experiments jointly show that modification of perfluoroalkyl chains of different lengths on MIP-206 modulates the electronic state of Ru nanoparticles and reduces the rate-determining step for the formation of the key intermediate of N2H2 *, leading to superior electrocatalytic performance.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Xiaoshuo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xinyang Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Hanlin Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Xiaoye Hu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Wu S, Yan J, Zhao D, Cai Z, Yu J, Li R, Li Q, Fan G. Three-dimensional RuCo alloy nanosheets arrays integrated pinewood-derived porous carbon for high-efficiency electrocatalytic nitrate reduction to ammonia. J Colloid Interface Sci 2024; 668:264-271. [PMID: 38678882 DOI: 10.1016/j.jcis.2024.04.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Electricity-driven nitrate (NO3-) to ammonia (NH3) conversion presents a unique opportunity to simultaneously eliminate nitrate from sewage while capturing ammonia. However, the Faradaic efficiency and ammonia yield in this eight-electron process remain unsatisfactory, underscoring the critical need for more effective electrocatalysts. In this study, a RuCo alloy nanosheets electrodeposited on pinewood-derived three-dimensional porous carbon (RuCo@TDC) is introduced as a highly-efficient electrocatalyst for the nitrate reduction reaction. The RuCo@TDC catalyst exhibits superior electrocatalytic performance, achieving the highest NH3 yield of 2.02 ± 0.11 mmol h-1 cm-2 at -0.6 V versus the reversible hydrogen electrode (vs. RHE) and the highest Faradaic efficiency of 95.7 ± 0.8 % at -0.2 V vs. RHE in an electrolyte mixture of 0.1 M KOH and 0.1 M KNO3. Furthermore, the Zn-NO3- battery using RuCo@TDC as the cathode provides a maximum power density of 2.46 mW cm-2 and a satisfactory NH3 yield of 1110 μg h-1 cm-2.
Collapse
Affiliation(s)
- Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Jingwen Yan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Donglin Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhengwei Cai
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Jiali Yu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruizhi Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| |
Collapse
|
6
|
Xu Q, Hu J, Yao H, Lei J, Zhou C, Zhang L, Pang H. Pyridinic-N Regulated Electron Injection to Modulate *OH Adsorption at Fe-N-C Sites for an Efficient Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42352-42362. [PMID: 39080825 DOI: 10.1021/acsami.4c10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
To enhance the efficiency of oxygen reduction reaction (ORR) catalysts, precise control over the adsorption/desorption energy barriers of oxygen intermediates at atomically dispersed Fe-N-C sites is essential yet challenging. Addressing this, we employed a pyrolysis approach using a nitrogen-containing polymer to fabricate Fe single-atom (SA) catalysts embedded in a pyridinic-N enriched carbon matrix. This synthesis strategy yielded Fe SAs that demonstrated a superior electrochemical ORR performance, evidenced by an impressive half-wave potential of 0.941 V and a high limiting current density of 5.72 mA/cm2. Moreover, when applied in homemade Zn-air batteries, this premier catalyst exhibited exceptional specific capacity (720 mAh/gZn), peak power density (253 mW/cm2), and notable long-term stability. Theoretical insights revealed that the increased pyridinic-N content in the catalyst facilitated efficient electron transfer from N atoms to the Fe active sites, thus fine-tuning the d-band center and effectively controlling the adsorption energy barrier of *OH species. These mechanisms synergistically improve the ORR performance. Crucially, this fabrication method shows promise for adaptation to other transition metal-based SAs, including Co, Ni, and Cu, potentially establishing a versatile synthesis route for developing atomically dispersed catalyst systems in future applications.
Collapse
Affiliation(s)
- Qiaoling Xu
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Jinsong Hu
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei Anhui 230031, PR China
| | - Huiying Yao
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Jie Lei
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Chunhui Zhou
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Lei Zhang
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
7
|
Du T, Zhang P, Jiao Z, Zhou J, Ding Y. Homogeneous and Heterogeneous Frustrated Lewis Pairs for the Activation and Transformation of CO 2. Chem Asian J 2024; 19:e202400208. [PMID: 38607325 DOI: 10.1002/asia.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Due to the serious ecological problems caused by the high CO2 content in the atmosphere, reducing atmospheric CO2 has attracted widespread attention from academia and governments. Among the many ways to mitigate CO2 concentration, the capture and comprehensive utilization of CO2 through chemical methods have obvious advantages, whose key is to develop suitable adsorbents and catalysts. Frustrated Lewis pairs (FLPs) are known to bind CO2 through the interaction between unquenched Lewis acid sites/Lewis base sites with the O/C of CO2, simultaneously achieving CO2 capture and activation, which render FLP better potential for CO2 utilization. However, how to construct efficient FLP targeted for CO2 utilization and the mechanism of CO2 activation have not been systematically reported. This review firstly provides a comprehensive summary of the recent advances in the field of CO2 capture, activation, and transformation with the help of FLP, including the construction of homogeneous and heterogeneous FLPs, their interaction with CO2, reaction activity, and mechanism study. We also illustrated the challenges and opportunities faced in this field to shed light on the prospective research.
Collapse
Affiliation(s)
- Tao Du
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, Peoples R. China
- School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing, 211189, Jiangsu, Peoples R. China
| | - Peng Zhang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, Peoples R. China
| | - Zhen Jiao
- School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing, 211189, Jiangsu, Peoples R. China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing, 211189, Jiangsu, Peoples R. China
| | - Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, Peoples R. China
| |
Collapse
|
8
|
Shi Y, Li P, Chen H, Wang Z, Song Y, Tang Y, Lin S, Yu Z, Wu L, Yu JC, Fu X. Photocatalytic toluene oxidation with nickel-mediated cascaded active units over Ni/Bi 2WO 6 monolayers. Nat Commun 2024; 15:4641. [PMID: 38821955 PMCID: PMC11143222 DOI: 10.1038/s41467-024-49005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Adsorption and activation of C-H bonds by photocatalysts are crucial for the efficient conversion of C-H bonds to produce high-value chemicals. Nevertheless, the delivery of surface-active oxygen species for C-H bond oxygenation inevitably needs to overcome obstacles due to the separated active centers, which suppresses the catalytic efficiency. Herein, Ni dopants are introduced into a monolayer Bi2WO6 to create cascaded active units consisting of unsaturated W atoms and Bi/O frustrated Lewis pairs. Experimental characterizations and density functional theory calculations reveal that these special sites can establish an efficient and controllable C-H bond oxidation process. The activated oxygen species on unsaturated W are readily transferred to the Bi/O sites for C-H bond oxygenation. The catalyst with a Ni mass fraction of 1.8% exhibits excellent toluene conversion rates and high selectivity towards benzaldehyde. This study presents a fascinating strategy for toluene oxidation through the design of efficient cascaded active units.
Collapse
Affiliation(s)
- Yingzhang Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Peng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Huiling Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhiwen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yujie Song
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jimmy C Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
9
|
Huang ZQ, Su X, Yu XY, Ban T, Gao X, Chang CR. Theoretical Perspective on the Design of Surface Frustrated Lewis Pairs for Small-Molecule Activation. J Phys Chem Lett 2024; 15:5436-5444. [PMID: 38743952 DOI: 10.1021/acs.jpclett.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The excellent reactivity of frustrated Lewis pairs (FLP) to activate small molecules has gained increasing attention in recent decades. Though the development of surface FLP (SFLP) is prompting the application of FLP in the chemical industry, the design of SFLP with superior activity, high density, and excellent stability for small-molecule activation is still challenging. Herein, we review the progress of designing SFLP by surface engineering, screening natural SFLP, and the dynamic formation of SFLP from theoretical perspectives. We highlight the breakthrough in fine-tuning the activity, density, and stability of the designed SFLP studied by using computational methods. We also discuss future challenges and directions in designing SFLP with outstanding capabilities for small-molecule activation.
Collapse
Affiliation(s)
- Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xue Su
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xi-Yang Yu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tao Ban
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Xin Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, China
| |
Collapse
|
10
|
Tian L, Tang ZJ, Hao LY, Dai T, Zou JP, Liu ZQ. Efficient Homolytic Cleavage of H 2O 2 on Hydroxyl-Enriched Spinel CuFe 2O 4 with Dual Lewis Acid Sites. Angew Chem Int Ed Engl 2024; 63:e202401434. [PMID: 38425264 DOI: 10.1002/anie.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
Collapse
Affiliation(s)
- Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zi-Jun Tang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Le-Yang Hao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ting Dai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Miao B, Qiu Z, Zhen Z, Yang Y, Yang Z, Xiao T, Lv J, Huang S, Wang Y, Ma X. Adsorption and activation of small molecules on boron nitride catalysts. Phys Chem Chem Phys 2024; 26:10494-10505. [PMID: 38517057 DOI: 10.1039/d4cp00103f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Hexagonal boron nitride possesses a unique layered structure, high specific surface area and similar electronic properties as graphene, which makes it not only a promising catalyst support, but also a highly effective metal-free catalyst in the booming field of green chemistry. Reactions involving small molecules (e.g., oxygen, low carbon alkanes, nitrogen and carbon dioxide) have always been a hot topic in catalytic research, especially associated with the adsorption and activation regime of different forms of small molecules on catalysts. In this review, we have investigated the adsorption of different small molecules and the relevant activation mechanisms of four typical chemical bonds (OO, C-H, NN, CO) on hexagonal boron nitride. Recent progress on approaches adopted to enhance the activation capacity such as doping, defect engineering and heterostructuring are summarized, highlighting the potential applications of nonmetallic hexagonal boron nitride catalysts in various reactions. This comprehensive investigation offers a reference point for the enhanced mechanistic understanding and future design of effective and sustainable catalytic systems based on boron nitride.
Collapse
Affiliation(s)
- Baiyu Miao
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhihuan Qiu
- Zhejiang Institute of Tianjin University, Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo, Zhejiang 315200, China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhibo Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Tiantian Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo, Zhejiang 315200, China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
12
|
Chen F, Lv X, Wang H, Wen F, Qu L, Zheng G, Han Q. Weak-Field Electro-Flash Induced Asymmetric Catalytic Sites toward Efficient Solar Hydrogen Peroxide Production. JACS AU 2024; 4:1219-1228. [PMID: 38559724 PMCID: PMC10976576 DOI: 10.1021/jacsau.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Borocarbonitride (BCN), in a mesoscopic asymmetric state, is regarded as a promising photocatalyst for artificial photosynthesis. However, BCN materials reported in the literature primarily consist of symmetric N-[B]3 units, which generate highly spatial coupled electron-hole pairs upon irradiation, thus kinetically suppressing the solar-to-chemical conversion efficiency. Here, we propose a facile and fast weak-field electro-flash strategy, with which structural symmetry breaking is introduced on key nitrogen sites. As-obtained double-substituted BCN (ds-BCN) possesses high-concentration asymmetric [B]2-N-C coordination, which displays a highly separated electron-hole state and broad visible-light harvesting, as well as provides electron-rich N sites for O2 affinity. Thereby, ds-BCN delivers an apparent quantum yield of 7.6% at 400 nm and a solar-to-chemical conversion efficiency of 0.3% for selective 2e-reduction of O2 to H2O2, over 4-fold higher than that of the traditional calcined BCN analogue and superior to the metal-free C3N4-based photocatalysts reported so far. The weak-field electro-flash method and as-induced catalytic site symmetry-breaking methodologically provide a new method for the fast and low-cost fabrication of efficient nonmetallic catalysts toward solar-to-chemical conversions.
Collapse
Affiliation(s)
- Fangshuai Chen
- Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory
of Cluster Science, Ministry of Education of China, School of Chemistry
and Chemical Engineering, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Ximeng Lv
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Haozhen Wang
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Fan Wen
- Laboratory
of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory
of Cluster Science, Ministry of Education of China, School of Chemistry
and Chemical Engineering, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Liangti Qu
- Key
Laboratory of Organic Optoelectronics & Molecular Engineering
of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Gengfeng Zheng
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Qing Han
- Laboratory
of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Faculty of Chemistry
and Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
13
|
Matuszek K, Piper SL, Brzęczek-Szafran A, Roy B, Saher S, Pringle JM, MacFarlane DR. Unexpected Energy Applications of Ionic Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313023. [PMID: 38411362 DOI: 10.1002/adma.202313023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Ionic liquids and their various analogues are without doubt the scientific sensation of the last few decades, paving the way to a more sustainable society. Their versatile suite of properties, originating from an almost inconceivably large number of possible cation and anion combinations, allows tuning of the structure to serve a desired purpose. Ionic liquids hence offer a myriad of useful applications from solvents to catalysts, through to lubricants, gas absorbers, and azeotrope breakers. The purpose of this review is to explore the more unexpected of these applications, particularly in the energy space. It guides the reader through the application of ionic liquids and their analogues as i) phase change materials for thermal energy storage, ii) organic ionic plastic crystals, which have been studied as battery electrolytes and in gas separation, iii) key components in the nitrogen reduction reaction for sustainable ammonia generation, iv) as electrolytes in aluminum-ion batteries, and v) in other emerging technologies. It is concluded that there is tremendous scope for further optimizing and tuning of the ionic liquid in its task, subject to sustainability imperatives in line with current global priorities, assisted by artificial intelligence.
Collapse
Affiliation(s)
- Karolina Matuszek
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Samantha L Piper
- Institute for Frontier Materials, Deakin University, Burwood Campus, Burwood, Victoria, 3125, Australia
| | - Alina Brzęczek-Szafran
- Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, Gliwice, 44-100, Poland
| | - Binayak Roy
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Saliha Saher
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, Burwood Campus, Burwood, Victoria, 3125, Australia
| | | |
Collapse
|
14
|
Zhang H, Yang G, Li X, Wang Y, Deng K, Yu H, Wang H, Wang Z, Wang L. Interstitial Boron-Modulated Porous Pd Nanotubes for Ammonia Electrosynthesis. Inorg Chem 2024; 63:3099-3106. [PMID: 38299496 DOI: 10.1021/acs.inorgchem.3c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Electrochemical conversion of nitrogen into ammonia at ambient conditions as a sustainable approach has gained significant attention, but it is still extremely challenging to simultaneously obtain a high faradaic efficiency (FE) and NH3 yield. In this work, the interstitial boron-doped porous Pd nanotubes (B-Pd PNTs) are constructed by combining the self-template reduction method with boron doping. Benefiting from distinctive one-dimensional porous nanotube architectonics and the incorporation of the interstitial B atoms, the resulting B-Pd PNTs exhibit high NH3 yield (18.36 μg h-1 mgcat.-1) and FE (21.95%) in neutral conditions, outperforming the Pd/PdO PNTs (10.4 μg h-1 mgcat.-1 and 8.47%). The present study provides an attractive method to enhance the efficiency of the electroreduction of nitrogen into ammonia by incorporating interstitial boron into porous Pd-based catalysts.
Collapse
Affiliation(s)
- Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guanghui Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinmiao Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yile Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
15
|
Li ZM, Zhang CQ, Liu C, Zhang HW, Song H, Zhang ZQ, Wei GF, Bao XJ, Yu CZ, Yuan P. High-efficiency Electroreduction of O 2 into H 2 O 2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation. Angew Chem Int Ed Engl 2024; 63:e202314266. [PMID: 37940614 DOI: 10.1002/anie.202314266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Co-based metal-organic frameworks (MOFs) as electrocatalysts for two-electron oxygen reduction reaction (2e- ORR) are highly promising for H2 O2 production, but suffer from the intrinsic activity-selectivity trade-off. Herein, we report a ZnCo bimetal-triazole framework (ZnCo-MTF) as high-efficiency 2e- ORR electrocatalysts. The experimental and theoretical results demonstrate that the coordination between 1,2,3-triazole and Co increases the antibonding-orbital occupancy on the Co-N bond, promoting the activation of Co center. Besides, the adjacent Zn-Co sites on 1,2,3-triazole enable an asymmetric "side-on" adsorption mode of O2 , favoring the reduction of O2 molecules and desorption of OOH* intermediate. By virtue of the unique ligand effect, the ZnCo-MTF exhibits a 2e- ORR selectivity of ≈100 %, onset potential of 0.614 V and H2 O2 production rate of 5.55 mol gcat -1 h-1 , superior to the state-of-the-art zeolite imidazole frameworks. Our work paves the way for the design of 2e- ORR electrocatalysts with desirable coordination and electronic structure.
Collapse
Affiliation(s)
- Zi-Meng Li
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Chao-Qi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hong-Wei Zhang
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhi-Qiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guang-Feng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiao-Jun Bao
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Cheng-Zhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Pei Yuan
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| |
Collapse
|
16
|
Xu S, Wang P, Mi X, Bao Y, Zhang H, Mo F, Zhou Q, Zhan S. N, S, and Cl tri-doped carbon boost the switching of radical to non-radical pathway in Fenton-like reactions: Synergism of N species and defects. JOURNAL OF HAZARDOUS MATERIALS 2023; 466:133321. [PMID: 38301438 DOI: 10.1016/j.jhazmat.2023.133321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Heteroatom doping represents a promising strategy for enhancing the generation of singlet oxygen (1O2) during the activation of peroxymonosulfate (PMS) using carbon-based catalysts; however, it remains a formidable challenge. In this study, we systematically controlled the structure of metal-free carbon-based materials by introducing different heteroatoms to investigate their efficacy in degrading organic pollutants in water via PMS activation. The results of reactive oxygen species detection showed that the dominant free radical in the four samples was different: CN (•SO4- and •OH), CNS (•O2-), CNCl (1O2), and CNClS (1O2). This led to the transformation of active species from free radicals to non-free radicals. The tri-doped carbons with nitrogen, sulfur, and chlorine (CNClS) exhibited exceptional performance in PMS activation and achieved a remarkable degradation efficiency of 95% within just 6 min for tetracycline. Moreover, a strong linear correlation was observed between the ratio of pyridine-N/graphite-N and ID/IG with the yield of 1O2, indicating that N species and defects play a crucial role in CNClS as they facilitate the transition from radical to non-radical pathways during PMS activation. These findings highlight the possibility that adjustable tri-heteroatom doping will expand the Fenton-like reaction for the treatment of actual wastewater.
Collapse
Affiliation(s)
- Shizhe Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Xueyue Mi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - He Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China.
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Wang H, Yuan M, Zhang J, Bai Y, Zhang K, Li B, Zhang G. Rational design of artificial Lewis pairs coupling with polyethylene glycol for efficient electrochemical ammonia synthesis. J Colloid Interface Sci 2023; 649:166-174. [PMID: 37348336 DOI: 10.1016/j.jcis.2023.06.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Ammonia (NH3) synthesis at mild conditions by electrocatalytic nitrogen reduction (eNRR) has received more attention and has been regarded as a promising alternative to the traditional Haber-Bosch process. Lewis acid-base pairs (LPs) can chemisorb and react with nitrogen by electronic interaction, while the tuning of the microenvironment near electrode can hinder hydrogen evolution reaction (HER) thus improving the selectivity of the eNRR. Herein, the FeOOH nanorod coupled with LPs on the surface (i.e., Fe, Fe-O) was synthesized, which could effectively drive eNRR. Meanwhile, polyethylene glycol (PEG) was introduced to serve as a local non-aqueous electrolyte system to inhibit HER. The prepared FeOOH-150 catalyst achieved outstanding eNRR performance with an NH3 yield rate of 118.07 μg h-1mgcat-1 and a Faradaic efficiency of 51.4 % at -0.6 V vs. RHE in 0.1 M LiClO4 + 20 % PEG. Both the experiment and DFT calculations revealed that the interaction of PEG with Lewis base sites could optimize nitrogen adsorption configuration and activation.
Collapse
Affiliation(s)
- Haifan Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menglei Yuan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Northwestern Polytechnical University, Xian 710000, China
| | - Jingxian Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; SynCat@Beijing, Synfuels China Technology Co. Ltd., Beijing 101407, China
| | - Ke Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bin Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Guangjin Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
19
|
Wang M, Zheng M, Sima Y, Lv C, Zhou X. The Construction of Surface-Frustrated Lewis Pair Sites to Improve the Nitrogen Reduction Catalytic Activity of In 2O 3. Molecules 2023; 28:7130. [PMID: 37894608 PMCID: PMC10608886 DOI: 10.3390/molecules28207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The construction of a surface-frustrated Lewis pairs (SFLPs) structure is expected to break the single electronic state restriction of catalytic centers of P-region element materials, due to the existence of acid-base and basic active canters without mutual quenching in the SFLPs system. Herein, we have constructed eight possible SFLPS structures on the In2O3 (110) surface by doping non-metallic elements and investigated their performance as electrocatalytic nitrogen reduction catalysts using density functional theory (DFT) calculations. The results show that P atom doping (P@In2O3) can effectively construct the structure of SFLPs, and the doped P atom and In atom near the vacancy act as Lewis base and acid, respectively. The P@In2O3 catalyst can effectively activate N2 molecules through the enzymatic mechanism with a limiting potential of -0.28 eV and can effectively suppress the hydrogen evolution reaction (HER). Electronic structure analysis also confirmed that the SFLPs site can efficiently capture N2 molecules and activate N≡N bonds through a unique "donation-acceptance" mechanism.
Collapse
Affiliation(s)
- Mingqian Wang
- Public Teaching Department, Heilongjiang Institute of Construction Technology, Harbin 150025, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Yuchen Sima
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Chade Lv
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| |
Collapse
|
20
|
Qi J, Du Y, Yang Q, Jiang N, Li J, Ma Y, Ma Y, Zhao X, Qiu J. Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering. Nat Commun 2023; 14:6263. [PMID: 37805528 PMCID: PMC10560254 DOI: 10.1038/s41467-023-41997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Hydrogen peroxide (H2O2) electrosynthesis through oxygen reduction reaction (ORR) is drawing worldwide attention, whereas suffering seriously from the sluggish oxygen evolution reaction (OER) and the difficult extraction of thermodynamically unstable H2O2. Herein, we present an electrosynthesis protocol involving coupling ORR-to-H2O2 with waste polyethylene terephthalate (PET) upcycling and the first H2O2 conversion strategy. Ni-Mn bimetal- and onion carbon-based catalysts are designed to catalyze ORR-to-H2O2 and ethylene glycol electrooxidation with the Faradaic efficiency of 97.5% (H2O2) and 93.0% (formate). This electrolysis system runs successfully at only 0.927 V to achieve an industrial-scale current density of 400 mA cm-2, surpassing all reported H2O2 electrosynthesis systems. H2O2 product is upgraded through two downstream routes of converting H2O2 into sodium perborate and dibenzoyl peroxide. Techno-economic evolution highlights the high gross profit of the ORR || PET upcycling protocol over HER || PET upcycling and ORR || OER. This work provides an energy-saving methodology for the electrosynthesis of H2O2 and other chemicals.
Collapse
Affiliation(s)
- Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yadong Du
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiachun Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yangjun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
21
|
Liang Y, Zhang Z, Su X, Feng X, Xing S, Liu W, Huang R, Liu Y. Coordination Defect-Induced Frustrated Lewis Pairs in Polyoxo-metalate-Based Metal-Organic Frameworks for Efficient Catalytic Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309030. [PMID: 37488072 DOI: 10.1002/anie.202309030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal-organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2 . This FLP catalyst can heterolytically dissociate H2 into active Hδ- , thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.
Collapse
Affiliation(s)
- Yan Liang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaofang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan, 453007, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
22
|
Yan L, Zhao Y, Zhang S, Guo E, Han C, Jiang H, Fu Q, Yang L, Niu W, Xing Y, Zheng Q, Zhao X. Controllable Exfoliation of MOF-Derived Van Der Waals Superstructure into Ultrathin 2D B/N Co-Doped Porous Carbon Nanosheets: A Superior Catalyst for Ambient Ammonia Electrosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300239. [PMID: 36855782 DOI: 10.1002/smll.202300239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Indexed: 06/02/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) to synthesize NH3 under ambient conditions is a promising alternative route to the conventional Haber-Bosch process, but it is still a great challenge to develop electrocatalysts' high Faraday efficiency and ammonia yield. Herein, a facile and efficient exfoliation strategy to synthesize ultrathin 2D boron and nitrogen co-doped porous carbon nanosheets (B/NC NS) via a metal-organic framework (MOF)-derived van der Waals superstructure, is reported. The results of experiments and theoretical calculations show that the doping of boron and nitrogen can modulate the electronic structure of the adjacent carbon atoms; which thus, promotes the competitive adsorption of nitrogen and reduces the energy required for ammonia synthesis. The B/NC NS exhibits excellent catalytic performance and stability in electrocatalytic NRR, with a yield rate of 153.4 µg·h-1 ·mg-1 cat and a Faraday efficiency of 33.1%, which is better than most of the reported NRR electrocatalysts. The ammonia yield of B/NC NS can maintain 92.7% of the initial NRR activity after 48 h stability test. The authors' controllable exfoliation strategy using MOF-derived van der Waals superstructure can provide a new insight for the synthesis of other 2D materials.
Collapse
Affiliation(s)
- Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yanchao Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shuo Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Enyan Guo
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Cong Han
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Huimin Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Qiuju Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Lingzhi Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Weijing Niu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| | - Qiuju Zheng
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xuebo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
23
|
Shi L, Bi S, Qi Y, Ning G, Ye J. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N 2 to NH 3. J Colloid Interface Sci 2023; 641:577-584. [PMID: 36963251 DOI: 10.1016/j.jcis.2023.03.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) for ammonia (NH3) under ambient conditions is emerging as a potentially sustainable alternative to the traditional, energy-intensive Haber-Bosch process for ammonia production. Currently, metal-based electrocatalysts constitute the majority of reported NRR catalysts. However, they often suffer from the shortcomings of competitive reactions of nitrogen adsorption/activation and hydrogen generation. Therefore, there is an urgent need to develop more environmentally friendly, low energy consumption, and non-polluting high-performance metal-free electrocatalysts. In this study, borocarbonitride (BCN) materials derived from boron imidazolate framework (BIF-20) were used to boost efficient electrochemical nitrogen conversion to ammonia under ambient conditions. The BCN catalyst demonstrated excellent performance in 0.1 M KOH, with an ammonia yield of 21.62 μg h-1 mgcat-1 and a Faradaic efficiency of 9.88% at -0.3 V (Reversible Hydrogen Electrode, RHE). This performance is superior to most metal-free catalysts and even some metal catalysts for NRR. The 15N2/14N2 isotope labeling experiments and density functional theory (DFT) calculations showed that N2 can be adsorbed and converted to NH3 on the surface of BCN, and that the energy barrier can be significantly reduced by structural design for BCN. This work highlights the important role played by the presence of Lewis acid-base pairs in metal-free catalysts for enhancing electrochemical NRR performance.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China.
| |
Collapse
|
24
|
Menachekanian S, Voegtle MJ, Warburton RE, Hammes-Schiffer S, Dawlaty JM. Inductive Effect Alone Cannot Explain Lewis Adduct Formation and Dissociation at Electrode Interfaces. J Am Chem Soc 2023; 145:5759-5768. [PMID: 36862607 DOI: 10.1021/jacs.2c12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Understanding breaking and formation of Lewis bonds at an electrified interface is relevant to a large range of phenomena, including electrocatalysis and electroadsorption. The complexities of interfacial environments and associated reactions often impede a systematic understanding of this type of bond at interfaces. To address this challenge, we report the creation of a main group classic Lewis acid-base adduct on an electrode surface and its behavior under varying electrode potentials. The Lewis base is a self-assembled monolayer of mercaptopyridine and the Lewis acid is BF3, forming a Lewis bond between nitrogen and boron. The bond is stable at positive potentials but cleaves at potentials more negative of approximately -0.3 V vs Ag/AgCl without an associated current. We also show that if the Lewis acid BF3 is supplied from a reservoir of Li+BF4- electrolyte, the cleavage is completely reversible. We propose that the N-B Lewis bond is affected both by the field-induced intramolecular polarization (electroinduction) and by the ionic structures and ionic equilibria near the electrode. Our results indicate that the second effect is responsible for the Lewis bond cleavage at negative potentials. This work is relevant to understanding the fundamentals of electrocatalytic and electroadsorption processes.
Collapse
Affiliation(s)
- Sevan Menachekanian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew J Voegtle
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
25
|
Chen H, Jiang DE, Yang Z, Dai S. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis. Acc Chem Res 2023; 56:52-65. [PMID: 36378327 DOI: 10.1021/acs.accounts.2c00564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ConspectusHexagonal boron nitrides (h-BNs) are attractive two-dimensional (2D) nanomaterials that consist of alternating B and N atoms and layered honeycomb-like structures similar to graphene. They have exhibited unique properties and promising application potentials in the field of energy storage and transformation. Recent advances in utilizing h-BN as a metal-free catalyst in the oxidative dehydrogenation of propane have triggered broad interests in exploring h-BN in catalysis. However, h-BN-based materials as robust nanocatalysts in heterogeneous catalysis are still underexplored because of the limited methodologies capable of affording h-BN with controllable crystallinity, abundant porosity, high purity, and defect engineering, which played important roles in tuning their catalytic performance. In this Account, our recent progress in addressing the above issues will be highlighted, including the synthesis of high-quality h-BN-based nanomaterials via both bottom-up and top-down pathways and their catalytic utilization as metal-free catalysts or as supports to tune the interfacial electronic properties on the metal nanoparticles (NPs). First, we will focus on the large-scale fabrication of h-BN nanosheets (h-BNNSs) with high crystallinity, improved surface area, satisfactory purity, and tunable defects. h-BN derived from the traditional approaches using boron trioxide and urea as the starting materials generally contains carbon/oxygen impurities and has low crystallinity. Several new strategies were developed to address the issues. Using bulk h-BN as the precursor via gas exfoliation in liquid nitrogen, single- or few-layered h-BNNS with abundant defects could be generated. Amorphous h-BN precursors could be converted to h-BN nanosheets with high crystallinity assisted by a magnesium metallic flux via a successive dissolution/precipitation/crystallization procedure. The as-fabricated h-BNNS featured high crystallinity and purity as well as abundant porosity. An ionothermal metathesis procedure was developed using inorganic molten salts (NaNH2 and NaBH4) as the precursors. The h-BN scaffolds could be produced on a large scale with high yield, and the as-afforded materials possessed high purity and crystallinity. Second, utilization of the as-prepared h-BN library as metal-free catalysts in dehydrogenation and hydrogenation reactions will be summarized, in which they exhibited enhanced catalytic activity over the counterparts from the previous synthesis method. Third, the interface modulation between metal NPs with the as-prepared defects' abundant h-BN support will be highlighted. The h-BN-based strong metal-support interaction (SMSI) nanocatalysts were constructed without involving reducible metal oxides via the ionothermal procedure we developed by deploying specific inorganic metal salts, acting as robust nanocatalysts in CO oxidation. Under conditions simulated for practical exhaust systems, promising catalytic efficiency together with high thermal stability and sintering resistance was achieved. Across all of these examples, unique insights into structures, defects, and interfaces that emerge from in-depth characterization through microscopy, spectroscopy, and diffraction will be highlighted.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.,College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
26
|
Shixuan Z, Donghao L, Jiwei J, Fengxiang L, Tao H. Oxygen reduction activity of a Pt-N4 single-atom catalyst prepared by electrochemical deposition and its bioelectrochemical application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Li J, Wang Y, Lu X, Guo K, Xu C. Increased Oxygen Vacancies in CeO 2 for Improved Electrocatalytic Nitrogen Reduction Performance. Inorg Chem 2022; 61:17242-17247. [PMID: 36268836 DOI: 10.1021/acs.inorgchem.2c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical nitrogen fixation is a sustainable and economical strategy to produce ammonia. However, fabricating efficient electrocatalysts for nitrogen fixation is still challenging. Theoretical predictions prove that the oxygen vacancy is able to modulate the electronic state of CeO2 and enhance its electrical conductivity, thus promoting the electrochemical nitrogen reduction reaction (NRR) process. Herein, CeO2 with high oxygen vacancy concentration was prepared via a two-step pyrolysis strategy of Ce metal-organic frameworks (MOFs, denoted H-CeO2). Compared to CeO2 with low oxygen vacancy concentration synthesized via one-step pyrolysis of Ce-MOFs (denoted L-CeO2), H-CeO2 exhibits a large NH3 yield rate (25.64 μg h-1 mgcat-1 at -0.5 V vs reversible hydrogen electrode, RHE) and high faradaic efficiency (FE, 6.3% at -0.4 V vs RHE).
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yantao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoying Lu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kailu Guo
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|