1
|
Ding X, Gao Q, Su Y, Chen J, Ye G. Pi-Stacking Geometry Directed Supramolecular Secondary Building Units Shaping Hydrogen-Bonded Frameworks for Intensive NH 3 Adsorption. Angew Chem Int Ed Engl 2025:e202500268. [PMID: 39810701 DOI: 10.1002/anie.202500268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/16/2025]
Abstract
Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation. Specifically, parallel-displaced π-π stackings of aromatic heterocycles bearing carboxyls promote the formation of SSBUs bridged by ammonium cations [NH4 +]8[COO-]8 (SSBU-4), enabling the assembly of hydrogen-bonded frameworks with permanent porosity and structural diversity influenced by the solvent effect. Comparatively, the non-heterocyclic building units exhibit geometrically- or energetically-unfavorable π stackings, resulting in fragile frameworks that collapse after removing disordered guests. Significantly, the heterocycle conjugated frameworks contain abundant open Brønsted acid N-H sites within pore channels, demonstrating remarkable NH3 adsorption ability among diverse industrial gases with a high capacity (275.7 mL/g, at 273 K, 100 kPa) as compared to reported porous molecular crystals.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Qiang Gao
- School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Yi Su
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Li Y, Fan L, Xu X, Sun Y, Wang W, Li B, Veroneau SS, Ji P. Hierarchical organic microspheres from diverse molecular building blocks. Nat Commun 2024; 15:5041. [PMID: 38871694 DOI: 10.1038/s41467-024-49379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Microspherical structures find broad application in chemistry and materials science, including in separations and purifications, energy storage and conversion, organic and biocatalysis, and as artificial and bioactive scaffolds. Despite this utility, the systematic diversification of their morphology and function remains hindered by the limited range of their molecular building blocks. Drawing upon the design principles of reticular synthesis, where diverse organic molecules generate varied porous frameworks, we show herein how analogous microspherical structures can be generated under mild conditions. The assembly of simple organic molecules into microspherical structures with advanced morphologies represents a grand challenge. Beginning with a partially condensed Schiff base which self-assembles into a hierarchical organic microsphere, we systematically synthesized sixteen microspheres from diverse molecular building blocks. We subsequently explicate the mechanism of hierarchical assembly through which these hierarchical organic microspheres are produced, isolating the initial monomer, intermediate substructures, and eventual microspheres. Furthermore, the open cavities present on the surfaces of these constructs provided distinctive adsorptive properties, which we harnessed for the immobilization of enzymes and bacteriophages. Holistically, these hierarchical organic microspheres provide an approach for designing multi-functional superstructures with advanced morphologies derived from simple organic molecules, revealing an extended length scale for reticular synthesis.
Collapse
Affiliation(s)
- Yintao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Longlong Fan
- Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Pengfei Ji
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Ding X, Chen J, Ye G. Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism. Nat Commun 2024; 15:2782. [PMID: 38555300 PMCID: PMC10981757 DOI: 10.1038/s41467-024-47058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Developing supramolecular porous crystalline frameworks with tailor-made architectures from advanced secondary building units (SBUs) remains a pivotal challenge in reticular chemistry. Particularly for hydrogen-bonded organic frameworks (HOFs), construction of geometrical cavities through secondary units has been rarely achieved. Herein, a body-centered cubic HOF (TCA_NH4) with octahedral cages was constructed by a C3-symmetric building block and NH4+ node-assembled cluster (NH4)4(COOH)8(H2O)2 that served as supramolecular secondary building units (SSBUs), akin to the polynuclear SBUs in reticular chemistry. Specifically, the octahedral cages could encapsulate four homogenous haloforms including CHCl3, CHBr3, and CHI3 with truncated octahedron configuration. Crystallographic evidence revealed the cages served as spatially-confined nanoreactors, enabling fast, broadband photochromic effect associated with the reversible photo/thermal transformation between encapsulated CHI3 and I2. Overall, this work provides a strategy by shaping SSBUs to expand the framework topology of HOFs and a prototype of hydrogen-bonded nanoreactors to accommodate reversible photochromic reactions.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Xi XJ, Li Y, Lang F, Pang J, Bu XH. Reticular synthesis of 8-connected carboxyl hydrogen-bonded organic frameworks for white-light-emission. Chem Sci 2024; 15:4529-4537. [PMID: 38516073 PMCID: PMC10952064 DOI: 10.1039/d3sc06410g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024] Open
Abstract
The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.
Collapse
Affiliation(s)
- Xiao-Juan Xi
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
5
|
Ferrando-Soria J, Fernandez A. Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials. NANO-MICRO LETTERS 2024; 16:88. [PMID: 38214764 PMCID: PMC10786801 DOI: 10.1007/s40820-023-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 01/13/2024]
Abstract
Porous organic molecular materials (POMMs) are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks, mainly held by non-covalent interactions. POMMs represent a variety of chemical families, such as hydrogen-bonded organic frameworks, porous organic salts, porous organic cages, C - H⋅⋅⋅π microporous crystals, supramolecular organic frameworks, π-organic frameworks, halogen-bonded organic framework, and intrinsically porous molecular materials. In some porous materials such as zeolites and metal organic frameworks, the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties. Therefore, considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials, we consider it appropriate to dedicate for the first time a critical review covering both topics. Herein, we will provide a summary of literature examples showcasing hierarchical POMMs, with a focus on their main synthetic approaches, applications, and the advantages brought forth by introducing hierarchy.
Collapse
Affiliation(s)
- Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Valencia, Spain.
| | - Antonio Fernandez
- School of Science, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
6
|
Halliwell C, Soria JF, Fernandez A. Beyond Microporosity in Porous Organic Molecular Materials (POMMs). Angew Chem Int Ed Engl 2023; 62:e202217729. [PMID: 36637113 DOI: 10.1002/anie.202217729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Porous organic molecular materials (POMMs) are a novel class of porous materials that cover a wide range of organic-based molecular building blocks connected through weak supramolecular interactions, such as hydrogen bonds, π-π stacking, van der Waals and electrostatic interactions. Despite of their diverse chemical and structural nature, common features to POMMs include solution processability, crystallinity and microporosity. Herein, we focus, for the first time, on the advance of the field of POMMs beyond the archetypical microporosity. In particular, we highlight relevant examples of meso- and macroporous POMMs, as well as hierchachical ones (micro-/meso-, micro-/macro- and meso-/macroporous). We also remark some of their unique properties, and how they can be key in many applications.
Collapse
Affiliation(s)
- Chris Halliwell
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - Jesus Ferrando Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980, Paterna, València, Spain
| | - Antonio Fernandez
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
7
|
Lee JSM. Hierarchical pore assembly. Nat Rev Chem 2022; 6:839. [PMID: 37117708 DOI: 10.1038/s41570-022-00450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Halliwell CA, Dann SE, Ferrando‐Soria J, Plasser F, Yendall K, Ramos‐Fernandez EV, Vladisavljević GT, Elsegood MRJ, Fernandez A. Hierarchical Assembly of a Micro- and Macroporous Hydrogen-Bonded Organic Framework with Tailored Single-Crystal Size. Angew Chem Int Ed Engl 2022; 61:e202208677. [PMID: 36161683 PMCID: PMC9827975 DOI: 10.1002/anie.202208677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/12/2023]
Abstract
Porous organic molecular materials represent an emergent field of research in Chemistry and Materials Science due to their unique combination of properties. To enhance their performance and expand the number of applications, the incorporation of hierarchical porosity is required, as exclusive microporosity entails several limitations. However, the integration of macropores in porous organic molecular materials is still an outstanding challenge. Herein, we report the first example of a hydrogen-bonded organic framework (MM-TPY) with hierarchical skeletal morphology, containing stable micro- and macroporosity. The crystal size, from micro to centimetre scale, can be controlled in a single step without using additives or templates. The mechanism of assembly during the crystal formation is compatible with a skeletal crystal growth. As proof of concept, we employed the hierarchical porosity as a platform for the dual, sequential and selective co-recognition of molecular species and microparticles.
Collapse
Affiliation(s)
| | - Sandra E. Dann
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | | | - Felix Plasser
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Keith Yendall
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Enrique V. Ramos‐Fernandez
- Laboratorio de Materiales AvanzadosDepartamento de Química Inorgánica-Instituto Universitario de Materiales de AlicanteUniversity of AlicanteAlicanteE-03080Spain
| | - Goran T. Vladisavljević
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Mark R. J. Elsegood
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Antonio Fernandez
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| |
Collapse
|