1
|
Li P, Wang Y, Zhao H, Qiu Y. Electroreductive Cross-Coupling Reactions: Carboxylation, Deuteration, and Alkylation. Acc Chem Res 2024. [PMID: 39670841 DOI: 10.1021/acs.accounts.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ConspectusElectrochemistry has been used as a tool to drive chemical reactions for more than two centuries. With the help of an electrode and a power source, chemists are provided with a system whose potential can be precisely dialed in. The theoretically infinite redox range renders electrochemistry capable of oxidizing or reducing some of the most tenacious compounds. Indeed, electroreduction offers an alternative to generating highly active intermediates from electrophiles (e.g., halides, alkenes, etc.) in organic synthesis, which can be untouchable with traditional reduction methods. Meanwhile, the reductive coupling reactions are extensively utilized in both industrial and academic settings due to their ability to swiftly, accurately, and effectively construct C-C and C-X bonds, which present innovative approaches for synthesizing complex molecules. Nonetheless, its application is constrained by several inherent limitations: (a) the requirement for stoichiometric quantities of reducing agents, (b) scarce activation strategies for inert substrates with high reduction potentials, (c) incomplete mechanistic elucidation, and (d) challenges in the isolation of intermediates. The merging of electrochemistry and reductive coupling represents an attractive approach to address the above limitations in organic synthesis and has seen increasing use in the synthetic community over the past few years.Since 2020, our group has been dedicated to developing electroreductive cross-coupling reactions using readily available organic substrates with small molecules, such as organic halides, alkenes, arenes, CO2, and D2O, to construct high value-added organic products. Electroreductive chemistry is highly versatile and offers powerful reducing capacity and precise selectivity control, which has allowed us to develop three electrochemical modes in our lab: (1) An economically advantageous electrochemical direct reduction (EDR) strategy that emphasizes efficiency, achieves high atom utilization, and minimizes unnecessary atomic waste. (2) A class of electrochemical organo-mediated reduction (EOMR) methods that are capable of effectively controlling reaction intermediates and reaction pathways. This allows for precise modulation of reaction processes to enhance efficiency and selectivity. (3) The electrochemical metal-catalyzed reduction (EMCR) method that enables selective activation and functionalization of specific chemical bonds or functional groups under mild conditions, thereby reducing the occurrence of side reactions. We commenced our studies by establishing an organic-mediator-promoted electroreductive carboxylation of aryl and alkyl halides. This strategy was then employed for the arylcarboxylation of simple styrenes with aryl halides in a highly selective manner. Meanwhile, under direct electrolysis conditions, the carboxylation of arenes and epoxides with CO2 as the carboxyl source was achieved. Moreover, through the precise adjustment of the electroreductive conditions, we successfully accomplished the electroreductive deuteration of arenes, olefins, and unactivated alkyl halides, enabling the efficient and selective formation of D-labeled products. Finally, building on our previous understanding of alkyl halides, we developed a series of electrochemical alkylation reactions that enable the efficient formation of C(sp3)-C(sp3) bonds using alkyl halides.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Youai Qiu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Fan Y, Zhang T, Wu M, Liu P, Sun P. Alkylthiolation of Aryl Halides under Electrochemical Conditions. J Org Chem 2024; 89:17744-17751. [PMID: 39586025 DOI: 10.1021/acs.joc.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
An electrochemical protocol for the alkylthiolation of aryl halides was developed. By using dialkyl disulfides as the alkylthio sources, Mg plate as the sacrificial anode and graphite felt (GF) as the cathode, a series of aryl sulfides were obtained in moderate to good yields. The approach was also suitable for the synthesis of aryl selenides. This method has the features such as simple reaction conditions and good functional group compatibility, which makes it have a good application prospect in organic synthesis and drug synthesis.
Collapse
Affiliation(s)
- Yingsibing Fan
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Tan Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Mengyun Wu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
4
|
Sun GQ, Liao LL, Ran CK, Ye JH, Yu DG. Recent Advances in Electrochemical Carboxylation with CO 2. Acc Chem Res 2024; 57:2728-2745. [PMID: 39226463 DOI: 10.1021/acs.accounts.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ConspectusCarbon dioxide (CO2) is recognized as a greenhouse gas and a common waste product. Simultaneously, it serves as an advantageous and commercially available C1 building block to generate valuable chemicals. Particularly, carboxylation with CO2 is considered a significant method for the direct and sustainable production of important carboxylic acids. However, the utilization of CO2 is challenging owing to its thermodynamic stability and kinetic inertness. Recently, organic electrosynthesis has emerged as a promising approach that utilizes electrons or holes as environmentally friendly redox reagents to produce reactive intermediates in a controlled and selective manner. This technique holds great potential for the CO2 utilization.Since 2015, our group has been dedicated to exploring the utilization of CO2 in organic synthesis with a particular focus on electrochemical carboxylation. Despite the significant advancements made in this area, there are still many challenges, including the activation of inert substrates, regulation of selectivity, diversity in electrolysis modes, and activation strategies. Over the past 7 years, our team, with many great experts, has presented findings on electrochemical carboxylation with CO2 under mild conditions. In this context, we primarily highlight our contributions to selective electrocarboxylations, encompassing new reaction systems, selectivity control methods, and activation approaches.We commenced our research by establishing a Ni-catalyzed electrochemical carboxylation of unactivated aryl halides and alkyl bromides in conjunction with a useful paired anodic reaction. This approach eliminates the need for sacrificial anodes, rendering the carboxylation process sustainable. To further utilize the widely existing yet cost-effective alkyl chlorides, we have developed a deep electroreductive system to achieve carboxylation of unactivated alkyl chlorides and poly(vinyl chloride), allowing the direct modification and upgrading of waste polymers.Through precise adjustment of the electroreductive conditions, we successfully demonstrated the dicarboxylation of both strained carbocycles and acyclic polyarylethanes with CO2 via C-C bond cleavage. Furthermore, we have realized the dicarboxylative cyclization of unactivated skipped dienes to produce the valuable ring-tethered adipic acids through single-electron reduction of CO2 to the CO2 radical anion (CO2•-). In terms of the asymmetric carboxylation, Guo's and our groups have recently achieved the nickel-catalyzed enantioselective electroreductive carboxylation reaction using racemic propargylic carbonates and CO2, paving the way for the synthesis of enantioenriched propargylic carboxylic acids.In addition to the aforementioned advancements, Lin's and our groups have also developed new electrolysis modes to achieve regiodivergent C-H carboxylation of N-heteroarenes dictated by electrochemical reactors. The choice of reactors plays a crucial role in determining whether the hydrogen atom transfer (HAT) reagents are formed anodically, consequently influencing the carboxylation pathways of N-heteroarene radical anions in the distinct electrolyzed environments.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Lai Y, Milner PJ. Paired Electrolysis Enables Reductive Heck Coupling of Unactivated (Hetero)Aryl Halides and Alkenes. Angew Chem Int Ed Engl 2024; 63:e202408834. [PMID: 38900083 PMCID: PMC11427156 DOI: 10.1002/anie.202408834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The formation of carbon-carbon (C-C) bonds is a cornerstone of organic synthesis. Among various methods to construct Csp2-Csp3 bonds, the reductive Heck reaction between (hetero)aryl halides and alkenes stands out due to its potential efficiency and broad substrate availability. However, traditional reductive Heck reactions are limited by the use of precious metal catalysts and/or limited aryl halide and alkene compatibility. Here, we present an electrochemically mediated, metal- and catalyst-free reductive Heck reaction that tolerates both unactivated (hetero)aryl halides and diverse alkenes such as vinyl boronates and silanes. Detailed electrochemical and deuterium-labeling studies support that this transformation likely proceeds through a paired electrolysis pathway, in which acid generated by the oxidation of N,N-diisopropylethylamine (DIPEA) at the anode intercepts an alkyl carbanion formed after radical-polar crossover at the cathode. As such, this approach offers a sustainable method for the construction of Csp2-Csp3 bonds from (hetero)aryl halides and alkenes, paving the way for the development of other electrochemically mediated olefin difunctionalization reactions.
Collapse
Affiliation(s)
- Yihuan Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
6
|
Li X, Zhou J, Deng W, Wang Z, Wen Y, Li Z, Qiu Y, Huang Y. Electroreductive deuteroarylation of alkenes enabled by an organo-mediator. Chem Sci 2024; 15:11418-11427. [PMID: 39054999 PMCID: PMC11268466 DOI: 10.1039/d4sc03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Electroreduction mediated by organo-mediators has emerged as a concise and effective strategy, holding significant potential in the site-specific introduction of deuterium. In this study, we present an environmentally friendly electroreduction approach for anti-Markovnikov selective deuteroarylation of alkenes and aryl iodides with D2O as the deuterium source. The key to the protocol lies in the employment of a catalytic amount of 2,2'-bipyiridine as an efficient organo-mediator, which facilitates the generation of aryl radicals by assisting in the cleavage of the C-X (X = I or Br) bonds in aryl halides. Because its reduction potential matches that of aryl iodides, the organo-mediator can control the chemoselectivity of the reaction and avoid the side reactions of competitive substrate deuteration. These phenomena are theoretically supported by CV experiments and DFT calculations. Our protocol provides a series of mono-deuterated alkylarenes with excellent deuterium incorporation through two single-electron reductions (SER), without requiring metal catalysts, external reductants, and sacrificial anodes.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| |
Collapse
|
7
|
Xie F, Han F, Su Q, Peng Y, Jing L, Han P. Electroreductive Arylcarboxylation of Styrenes with CO 2 and Aryl Halides via a Radical-Polar Crossover Mechanism. Org Lett 2024; 26:4427-4432. [PMID: 38757832 DOI: 10.1021/acs.orglett.4c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
2,3-Diaryl propanoic acids are important structures as a result of their widespread presence in numerous bioactive compounds. However, the limitations of existing synthetic techniques include the requirement for costly catalysts and limited substrates. Here, we developed a novel electroreductive arylcarboxylation of alkenes with CO2 based on a radical-polar crossover pathway assisted by easily accessible dimethyl terephthalate as a reductive mediator. This method will provide an efficient strategy for the synthesis of 2,3-diarylpropanoic acids.
Collapse
Affiliation(s)
- Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Qian Su
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Yulin Peng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| |
Collapse
|
8
|
Wang Y, Wang Q, Wu L, Jia K, Wang M, Qiu Y. Electroreduction of unactivated alkenes using water as hydrogen source. Nat Commun 2024; 15:2780. [PMID: 38555370 PMCID: PMC10981685 DOI: 10.1038/s41467-024-47168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Herein, we report an electroreduction of unactivated alkyl alkenes enabled by [Fe]-H, which is provided through the combination of anodic iron salts and the silane generated in situ via cathodic reduction, using H2O as an H-source. The catalytic amounts of Si-additive work as an H-carrier from H2O to generate a highly active silane species in situ under continuous electrochemical conditions. This approach shows a broad substrate scope and good functional group compatibility. In addition to hydrogenation, the use of D2O instead of H2O provides the desired deuterated products in good yields with excellent D-incorporation (up to >99%). Further late-stage hydrogenation of complex molecules and drug derivatives demonstrate potential application in the pharmaceutical industry. Mechanistic studies are performed and provide support for the proposed mechanistic pathway.
Collapse
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lei Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
9
|
Wang T, Guan Y, Zhang T, Liang Y. Ligand Relay for Nickel-Catalyzed Decarbonylative Alkylation of Aroyl Chlorides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306923. [PMID: 38088530 PMCID: PMC10916626 DOI: 10.1002/advs.202306923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
Transition metal-catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late-stage applications. The development of the selective decarbonylative of carboxylic acid derivatives, especially the most fundamental aroyl chlorides, with stable and cheap electrophiles under mild conditions is highly desirable and meaningful, but remains challenging. Herein, a strategy of nickel-catalyzed decarbonylative alkylation of aroyl chlorides via phosphine/nitrogen ligand relay is reported. The simple phosphine ligand is found essential for the decarbonylation step, while the nitrogen ligand promotes the cross-electrophile coupling. Such a ligand relay system can effectively and orderly carry out the catalytic process at room temperature, utilizing easily available aroyl chlorides as an aryl electrophile for reductive alkylation. This discovery provides a new strategy for direct decarbonylative coupling, features operationally simple, mild conditions, and excellent functional group tolerance. The mild approach is applied to the late-stage methylation of various pharmaceuticals. Extensive experiments are carried out to provide insights into the reaction pathway and support the ligand relay process.
Collapse
Affiliation(s)
- Tian‐Zhang Wang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Qiu Guan
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Tian‐Yu Zhang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Feng Liang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| |
Collapse
|
10
|
Ren B, Xu J, Liu C. Rapid and Practical Synthesis of gem-Dibromoalkanes from Aldehydes by Tribromide Reagent. Chem Asian J 2024:e202301087. [PMID: 38183358 DOI: 10.1002/asia.202301087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
gem-Dibromoalkanes are important synthetic building block in organic chemistry, but their preparation is still troublesome. Herein, we have developed a simple and practical protocol for the synthesis of gem-dibromoalkanes from aldehydes using tetrabutylammonium tribromide and triphenyl phosphite. A variety of alkyl and aromatic aldehydes can be transformed into the corresponding products within 10 minutes. This protocol is also applicable to alcohols, and the configuration of chiral alcohol is inverted during the process with excellent enantiopurity.
Collapse
Affiliation(s)
- Bowen Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianeng Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Qin JH, Xiong ZQ, Cheng C, Hu M, Li JH. Electroreductive Carboxylation of Propargylic Acetates with CO 2: Access to Tetrasubstituted 2,3-Allenoates. Org Lett 2023; 25:9176-9180. [PMID: 38113454 DOI: 10.1021/acs.orglett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An electroreductive carboxylation of propargylic alcohols with CO2 and then workup with TMSCHN2 to construct tetrasubstituted 2,3-allenoates is developed. This method allows the incorporation of an external ester group into the resulting allene system through electroreduction, carboxylation, and deacetoxylation cascades. Mechanistically, electricity on/off experiments and cyclic voltammetry analysis support the preferential generation of the CO2 radical anion or the 3-aryl propargylic acetate radical anion based on the electron nature of the aryl rings.
Collapse
Affiliation(s)
- Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chaozhihui Cheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
12
|
Liu Y, Li P, Wang Y, Qiu Y. Electroreductive Cross-Electrophile Coupling (eXEC) Reactions. Angew Chem Int Ed Engl 2023; 62:e202306679. [PMID: 37327185 DOI: 10.1002/anie.202306679] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Electrochemistry utilizes electrons as a potent, controllable, and traceless alternative to chemical oxidants or reductants, and typically offers a more sustainable option for achieving selective organic synthesis. Recently, the merger of electrochemistry with readily available electrophiles has been recognized as a viable and increasingly popular methodology for efficiently constructing challenging C-C and C-heteroatom bonds in a sustainable manner for complex organic molecules. In this mini-review, we have systematically summarized the most recent advances in electroreductive cross-electrophile coupling (eXEC) reactions during the last decade. Our focus has been on readily available electrophiles, including aryl and alkyl organic (pseudo)halides, as well as small molecules such as CO2 , SO2 , and D2 O.
Collapse
Affiliation(s)
- Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
13
|
Yang K, Feng T, Qiu Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202312803. [PMID: 37698174 DOI: 10.1002/anie.202312803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Despite widespread use of the deuterium isotope effect, selective deuterium labeling of chemical molecules remains a major challenge. Herein, a facile and general electrochemically driven, organic mediator enabled deuteration of styrenes with deuterium oxide (D2 O) as the economical deuterium source was reported. Importantly, this transformation could be suitable for various electron rich styrenes mediated by triphenylphosphine (TPP). The reaction proceeded under mild conditions without transition-metal catalysts, affording the desired products in good yields with excellent D-incorporation (D-inc, up to >99 %). Mechanistic investigations by means of isotope labeling experiments and cyclic voltammetry tests provided sufficient support for this transformation. Notably, this method proved to be a powerful tool for late-stage deuteration of biorelevant compounds.
Collapse
Affiliation(s)
- Keming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
14
|
Kong X, Chen Y, Chen X, Ma C, Chen M, Wang W, Xu YQ, Ni SF, Cao ZY. Organomediated electrochemical fluorosulfonylation of aryl triflates via selective C-O bond cleavage. Nat Commun 2023; 14:6933. [PMID: 37907478 PMCID: PMC10618246 DOI: 10.1038/s41467-023-42699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China.
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Cheng Ma
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, 213164, Changzhou, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China.
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
15
|
Li P, Kou G, Feng T, Wang M, Qiu Y. Electrochemical NiH-Catalyzed C(sp 3 )-C(sp 3 ) Coupling of Alkyl Halides and Alkyl Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311941. [PMID: 37708153 DOI: 10.1002/anie.202311941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Herein, an electrochemically driven NiH-catalyzed reductive coupling of alkyl halides and alkyl alkenes for the construction of Csp3 -Csp3 bonds is firstly reported. Notably, alkyl halides serve dual function as coupling substrates and as hydrogen sources to generate NiH species under electrochemical conditions. The tunable nature of this reaction is realized by introducing an intramolecular coordinating group to the substrate, where the product can be easily adjusted to give the desired branched products. The method proceeds under mild conditions, exhibits a broad substrate scope, and affords moderate to excellent yields with over 70 examples, including late-stage modification of natural products and drug derivatives. Mechanistic insights offer evidence for an electrochemically driven coupling process. The sp3 -carbon-halogen bonds can be activated through single electron transfer (SET) by the nickel catalyst in its low valence state, generated by cathodic reduction, and the generation of NiH species from alkyl halides is pivotal to this transformation.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
16
|
Liu M, Feng T, Wang Y, Kou G, Wang Q, Wang Q, Qiu Y. Metal-free electrochemical dihydroxylation of unactivated alkenes. Nat Commun 2023; 14:6467. [PMID: 37833286 PMCID: PMC10575955 DOI: 10.1038/s41467-023-42106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Herein, a metal-free electrochemical dihydroxylation of unactivated alkenes is described. The transformation proceeds smoothly under mild conditions with a broad range of unactivated alkenes, providing valuable and versatile dihydroxylated products in moderate to good yields without the addition of costly transition metals and stoichiometric amounts of chemical oxidants. Moreover, this method can be applied to a range of natural products and pharmaceutical derivatives, further demonstrating its synthetic utility. Mechanistic studies have revealed that iodohydrin and epoxide intermediate are formed during the reaction process.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qiuyan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Qian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
17
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
18
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Cobalt-Promoted Electroreductive Cross-Coupling of Prop-2-yn-1-yl Acetates with Chloro(vinyl)silanes. Org Lett 2023; 25:7263-7267. [PMID: 37756013 DOI: 10.1021/acs.orglett.3c02989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An electroreductive cross-coupling of prop-2-yn-1-yl acetates with chloro(vinyl)silanes for producing tetrasubstituted silylallenes is developed. The method enables the formation of a new C─Si bond through the cathodic reduction formation of the silyl radical, radical addition across the C≡C bond, the alkenyl anion intermediate formation, and deacetoxylation and represents a mild, practical route to the synthesis of silylallenes. Mechanistic studies reveal that CoCl2 acts as the mediator to promote the formation of the alkenyl anion intermediate via electron transfer.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
19
|
Zhang X, Li Z, Chen H, Shen C, Wu H, Dong K. Pairing Electrocarboxylation of Unsaturated Bonds with Oxidative Transformation of Alcohol and Amine. CHEMSUSCHEM 2023; 16:e202300807. [PMID: 37366066 DOI: 10.1002/cssc.202300807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
A parallel paired electrosynthetic method, coupling electrocarboxylation incorporating CO2 into ketone, imine, and alkene with alcohol oxidation or oxidative cyanation of amine, was developed for the first time. Various carboxylic acids as well as aldehyde/ketone or α-nitrile amine were prepared at the cathode and anode respectively in a divided cell. Its utility and merits on simultaneously achieving high atom-economic CO2 utilization, elevated faradaic efficiency (FE, total FE of up to 166 %), and broad substrate scope were demonstrated. The preparation of pharmaceutical intermediates for Naproxen and Ibuprofen via this approach proved its potential application in green organic electrosynthesis.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zonghan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hongshuai Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
20
|
Lai Y, Halder A, Kim J, Hicks TJ, Milner PJ. Electroreductive Radical Borylation of Unactivated (Hetero)Aryl Chlorides Without Light by Using Cumulene-Based Redox Mediators. Angew Chem Int Ed Engl 2023; 62:e202310246. [PMID: 37559156 PMCID: PMC10529720 DOI: 10.1002/anie.202310246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Single-electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2 <-2 V vs Fc/Fc+ ), such as ubiquitous electron-neutral and electron-rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes-organic molecules with multiple consecutive double bonds-can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately -1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step-wise electron transfer from reduced cumulenes to electron-neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.
Collapse
Affiliation(s)
- Yihuan Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Arjun Halder
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas J Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Guo C, Li P, Wang S, Liu N, Bu Q, Wang Y, Qiu Y. Selective Electroreductive Hydroboration of Olefins with B 2pin 2. J Org Chem 2023; 88:4569-4580. [PMID: 36944134 DOI: 10.1021/acs.joc.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Organoboron showed great potential in the synthesis of various high-value chemical compounds. Direct hydroboration of olefins has been witnessed over time as a mainstream method for the synthesis of organoboron compounds. In this work, an electroreductive anti-Markovnikov hydroboration approach of olefins with readily available B2pin2 to synthesize valuable organoboron compounds with high chemo- and regioselectivities under metal catalyst-free conditions was reported. This protocol exhibited broad substrate scope and good functional-group tolerance on styrenes and heteroaromatic olefins, providing synthetically useful alkylborons with high efficiency and even various deuterium borylation products with good D-incorporation when CD3CN was employed as solvent. Furthermore, gram-scale reactions and extensive functional derivatization further highlighted the potential of this method.
Collapse
Affiliation(s)
- Chengcheng Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
22
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
23
|
Xie W, He L. Electrocarboxylation of Aryl Epoxides with CO 2 to Selectively Synthesize β-Hydroxy Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|