1
|
Gomez A, Thompson WH, Laage D. Neural-network-based molecular dynamics simulations reveal that proton transport in water is doubly gated by sequential hydrogen-bond exchange. Nat Chem 2024; 16:1838-1844. [PMID: 39164581 DOI: 10.1038/s41557-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
The transport of excess protons in water is central to acid-base chemistry, biochemistry and energy production. However, elucidating its mechanism has been challenging. Recent nonlinear vibrational spectroscopy experiments could not be explained by existing models. Here we use both vibrational spectroscopy calculations and neural-network-based molecular dynamics simulations that account for nuclear quantum effects for all atoms to determine the proton transport mechanism. Our simulations reveal an equilibrium between two stable proton-localized structures with distinct Eigen-like and Zundel-like hydrogen-bond motifs. Proton transport follows a three-step mechanism gated by two successive hydrogen-bond exchanges: the first reduces the proton-acceptor water coordination, leading to proton transfer, and the second, the rate-limiting step, prevents rapid back-transfer by increasing the proton-donor coordination. This sequential mechanism is consistent with experimental characterizations of proton diffusion, explaining the low activation energy and the prolonged intermediate lifetimes in vibrational spectroscopy. These results are crucial for understanding proton dynamics in biochemical and technological systems.
Collapse
Affiliation(s)
- Axel Gomez
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Damien Laage
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
2
|
Flór M, Wilkins DM, de la Puente M, Laage D, Cassone G, Hassanali A, Roke S. Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science 2024:eads4369. [PMID: 39446897 DOI: 10.1126/science.ads4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The molecular structure of water is dynamic, with intermolecular (H)-bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic / basic conditions, but such details have not been measured. Here, we developed correlated vibrational spectroscopy, a symmetry-based method that distinctively separates interacting from non-interacting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that OH- donated ~8% more negative charge to the H-bond network of water and H3O+ accepted ~4% less negative charge from the H-bond network of water. D2O had ~9% more H-bonds compared to H2O, and acidic solutions displayed more dominant NQEs than basic ones.
Collapse
Affiliation(s)
- Mischa Flór
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - David M Wilkins
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Miguel de la Puente
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Ali Hassanali
- The "Abdus Salam" International Centre for Theoretical Physics, Trieste, Italy
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Nagasaka M. Probing Isolated Water Molecules in Aqueous Acetonitrile Solutions Using Oxygen K-Edge X-ray Absorption Spectroscopy. J Phys Chem Lett 2024:5165-5170. [PMID: 38713030 DOI: 10.1021/acs.jpclett.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Oxygen K-edge X-ray absorption spectroscopy (XAS) of an aqueous acetonitrile solution exhibited a sharp peak at approximately 537 eV, which was similar to that of water vapor and was not observed in liquid water. The inner-shell spectra of isolated water molecules and water clusters of different sizes surrounded by acetonitrile molecules were obtained by extracting these water structures from the liquid structures of aqueous acetonitrile solutions, as calculated using molecular dynamics simulations. The sharp peak profiles of the O K-edge XAS spectra were derived not from water clusters but from isolated water molecules surrounded by acetonitrile molecules. The present study proposes that isolated water molecules are easily formed in aqueous acetonitrile solutions and that the electronic structures of the isolated water molecules can be analyzed using O K-edge XAS spectra, which separates the contributions of small water clusters.
Collapse
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
4
|
Das SK, Winghart MO, Han P, Rana D, Zhang ZY, Eckert S, Fondell M, Schnappinger T, Nibbering ETJ, Odelius M. Electronic Fingerprint of the Protonated Imidazole Dimer Probed by X-ray Absorption Spectroscopy. J Phys Chem Lett 2024; 15:1264-1272. [PMID: 38278137 PMCID: PMC10860131 DOI: 10.1021/acs.jpclett.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Protons in low-barrier superstrong hydrogen bonds are typically delocalized between two electronegative atoms. Conventional methods to characterize such superstrong hydrogen bonds are vibrational spectroscopy and diffraction techniques. We introduce soft X-ray spectroscopy to uncover the electronic fingerprints for proton sharing in the protonated imidazole dimer, a prototypical building block enabling effective proton transport in biology and high-temperature fuel cells. Using nitrogen core excitations as a sensitive probe for the protonation status, we identify the X-ray signature of a shared proton in the solvated imidazole dimer in a combined experimental and theoretical approach. The degree of proton sharing is examined as a function of structural variations that modify the shape of the low-barrier potential in the superstrong hydrogen bond. We conclude by showing how the sensitivity to the quantum distribution of proton motion in the double-well potential is reflected in the spectral signature of the shared proton.
Collapse
Affiliation(s)
- Sambit K. Das
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Marc-Oliver Winghart
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Peng Han
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Debkumar Rana
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Zhuang-Yan Zhang
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Thomas Schnappinger
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Erik T. J. Nibbering
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Sopena Moros A, Li S, Li K, Doumy G, Southworth SH, Otolski C, Schaller RD, Kumagai Y, Rubensson JE, Simon M, Dakovski G, Kunnus K, Robinson JS, Hampton CY, Hoffman DJ, Koralek J, Loh ZH, Santra R, Inhester L, Young L. Tracking Cavity Formation in Electron Solvation: Insights from X-ray Spectroscopy and Theory. J Am Chem Soc 2024; 146:3262-3269. [PMID: 38270463 PMCID: PMC10859959 DOI: 10.1021/jacs.3c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We present time-resolved X-ray absorption spectra of ionized liquid water and demonstrate that OH radicals, H3O+ ions, and solvated electrons all leave distinct X-ray-spectroscopic signatures. Particularly, this allows us to characterize the electron solvation process through a tool that focuses on the electronic response of oxygen atoms in the immediate vicinity of a solvated electron. Our experimental results, supported by ab initio calculations, confirm the formation of a cavity in which the solvated electron is trapped. We show that the solvation dynamics are governed by the magnitude of the random structural fluctuations present in water. As a consequence, the solvation time is highly sensitive to temperature and to the specific way the electron is injected into water.
Collapse
Affiliation(s)
- Arturo Sopena Moros
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Shuai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christopher Otolski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinous 60439, United States
- Department of Chemistry, Northwestern University, 2145 N. Sheridan Rd., Evanston, Illinois 60208, United States
| | - Yoshiaki Kumagai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120, Sweden
| | - Marc Simon
- Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Sorbonne Université, CNRS, Paris F-75005, France
| | | | | | | | | | | | - Jake Koralek
- LCLS, SLAC, Menlo Park, California 94025, United States
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
- Department of Physics, Universität Hamburg, Notkestraße 9, Hamburg 22607, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Cardoso Barbosa JR, Queiroz MH, Rivelino R, Oliveira GDAR, Lião LM, Cunha S. Regioselectivity in the Nitration of Eugenol Is Independent of Inorganic Reagents: An Experimental and Theoretical Investigation with Synthetic and Mechanistic Implications. J Org Chem 2023. [PMID: 38153692 DOI: 10.1021/acs.joc.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In this study, we reinvestigated the straightforward nitration of eugenol using traditional reagents and bismuth nitrate. NMR analysis of the obtained products revealed that the regioselectivity of eugenol nitration was independent of the inorganic nitrating reagent used, consistently resulting in the formation of 6-nitroeugenol. This contradicts previous literature reports because the elusive synthesis of 5-nitroeugenol using Bi(NO3)3·5H2O was not achievable through straightforward methods; instead, this isomer could only be prepared via the well-established three-step synthesis. Theoretical investigations using DFT calculations, considering both the dielectric constant of the medium and explicit water molecules, substantiated this regioselectivity. It was found that hydration water played a critical role in the formation of a Zundel cation, shifting the thermodynamic equilibrium toward the exclusive production of 6-nitroeugenol. These results imply that all biological studies involving eugenol derivatives synthesized via direct nitration with Bi(NO3)3·5H2O should be reviewed, as they dealt with 6-substituted eugenol derivatives rather than the previously assumed 5-substituted eugenol.
Collapse
Affiliation(s)
| | - Murillo H Queiroz
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
| | - Roberto Rivelino
- Instituto de Física, Universidade Federal da Bahia, Salvador, Bahia 40210-340, Brazil
| | | | - Luciano Morais Lião
- Laboratório de RMN, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Silvio Cunha
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT em Energia e Ambiente, Campus Ondina, Salvador, Bahia 40170-290, Brazil
| |
Collapse
|
7
|
Vinogradova OI, Silkina EF. Electrophoresis of ions and electrolyte conductivity: From bulk to nanochannels. J Chem Phys 2023; 159:174707. [PMID: 37933780 DOI: 10.1063/5.0168557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
When electrolyte solutions are confined in micro- and nanochannels their conductivity is significantly different from those in a bulk phase. Here we revisit the theory of this phenomenon by focusing attention on the reduction in the ion mobility with the concentration of salt and a consequent impact to the conductivity of a monovalent solution, from bulk to confined in a narrow slit. We first give a systematic treatment of electrophoresis of ions and obtain equations for their zeta potentials and mobilities. The latter are then used to obtain a simple expression for a bulk conductivity, which is valid in a concentration range up to a few molars and more accurate than prior analytic theories. By extending the formalism to the electrolyte solution in the charged channel the equations describing the conductivity in different modes are presented. They can be regarded as a generalization of prior work on the channel conductivity to a more realistic case of a nonzero reduction of the electrophoretic mobility of ions with salt concentration. Our analysis provides a framework for interpreting measurements on the conductivity of electrolyte solutions in the bulk and in narrow channels.
Collapse
Affiliation(s)
- Olga I Vinogradova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, 31 Leninsky Prospect, 119071 Moscow, Russia
| | - Elena F Silkina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, 31 Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
8
|
Ekimova M, Kleine C, Ludwig J, Ochmann M, Agrenius TEG, Kozari E, Pines D, Pines E, Huse N, Wernet P, Odelius M, Nibbering ETJ. From Local Covalent Bonding to Extended Electric Field Interactions in Proton Hydration. Angew Chem Int Ed Engl 2022; 61:e202211066. [PMID: 36102247 PMCID: PMC9827956 DOI: 10.1002/anie.202211066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Seemingly simple yet surprisingly difficult to probe, excess protons in water constitute complex quantum objects with strong interactions with the extended and dynamically changing hydrogen-bonding network of the liquid. Proton hydration plays pivotal roles in energy transport in hydrogen fuel cells and signal transduction in transmembrane proteins. While geometries and stoichiometry have been widely addressed in both experiment and theory, the electronic structure of these specific hydrated proton complexes has remained elusive. Here we show, layer by layer, how utilizing novel flatjet technology for accurate x-ray spectroscopic measurements and combining infrared spectral analysis and calculations, we find orbital-specific markers that distinguish two main electronic-structure effects: Local orbital interactions determine covalent bonding between the proton and neigbouring water molecules, while orbital-energy shifts measure the strength of the extended electric field of the proton.
Collapse
Affiliation(s)
- Maria Ekimova
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Carlo Kleine
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jan Ludwig
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Miguel Ochmann
- Institute for Nanostructure and Solid State Physics, Center for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Thomas E. G. Agrenius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Eve Kozari
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Dina Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Ehud Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Nils Huse
- Institute for Nanostructure and Solid State Physics, Center for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Philippe Wernet
- Department of Physics and AstronomyUppsala UniversityBox 516 Lägerhyddsvägen 1751 20UppsalaSweden
| | - Michael Odelius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| |
Collapse
|