1
|
Hong F, Su X, Fang Y, He X, Shan B. Manipulating Photoconduction in Supramolecular Networks for Solar-Driven Nitrate Conversion to Ammonia and Oxygen. J Am Chem Soc 2024; 146:25200-25210. [PMID: 39222384 DOI: 10.1021/jacs.4c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
For photoelectrodes to be used in practical catalytic applications, challenges exist in achieving the efficient production and transport of photogenerated charge-separated states. Analogous concepts in traditional inorganic photoelectrodes can be applied to their organic-polymer counterparts with improved charge-separation efficiencies. In this work, we develop photoconductive organic networks to form a high-performance photoelectrode for NO3- reduction to NH3. In the integrated network, interfaces between the organic electron-donating photoconductor and electron-accepting catalyst can generate charge carriers efficiently upon illumination, leading to enhanced charge separation for photoelectrocatalysis. The photoelectrode network is capable of converting NO3- to NH3 at an external quantum efficiency of 13%. By coupling with a BiVO4 photoanode in tandem, the system reduces NO3- to NH3 and oxidizes H2O to O2 simultaneously at Faradaic efficiencies of 95-98% with sustained photocurrents and production yields. Investigation of the photoconductive network by steady-state/time-resolved spectroscopies reveals the efficient generation and transport of free charge carriers in the photoelectrode, providing a basis for high photoelectrocatalytic performances.
Collapse
Affiliation(s)
- Feiyang Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinhao Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinjia He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
2
|
Wang X, Gao Z, Tian W. An enzymolysis-induced energy transfer co-assembled system for spontaneously recoverable supramolecular dynamic memory. Chem Sci 2024; 15:11084-11091. [PMID: 39027284 PMCID: PMC11253121 DOI: 10.1039/d4sc02756f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The continuing growth of the digital world requires new ways of constructing memory devices to process and store dynamic data, because the current ones suffer from inefficiency, limited reads, and difficulty to manufacture. Here we propose a supramolecular dynamic memory (SDM) strategy based on an enzymolysis-induced energy transfer co-assembly derived from a naphthalene-based cationic monomer and organic dye sulforhodamine 101, enabling the construction of spontaneously recoverable dynamic memory devices. Benefitting from the large exciton migration rate (4.48 × 1015 L mol-1 s-1) between the monomer and sulforhodamine 101, the energy transfer process between the two is effectively achieved. Since alkaline phosphatase can selectively hydrolyze adenosine triphosphate, leading to the disruption of the co-assemblies, an enzyme-mediated time-dependent fluorochromic system is realized. On this basis, a SDM system featuring spontaneous recovery and enabling the memory of dynamic information in optical and electrical modes is successfully constructed. The current study represents a promising step in the nascent development of supramolecular materials for computational systems.
Collapse
Affiliation(s)
- Xuanyu Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
3
|
Noll N, Würthner F. Bioinspired Water Preorganization in Confined Space for Efficient Water Oxidation Catalysis in Metallosupramolecular Ruthenium Architectures. Acc Chem Res 2024; 57:1538-1549. [PMID: 38710509 PMCID: PMC11112732 DOI: 10.1021/acs.accounts.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
ConspectusNature has established a sustainable way to maintain aerobic life on earth by inventing one of the most sophisticated biological processes, namely, natural photosynthesis, which delivers us with organic matter and molecular oxygen derived from the two abundant resources sunlight and water. The thermodynamically demanding photosynthetic water splitting is catalyzed by the oxygen-evolving complex in photosystem II (OEC-PSII), which comprises a distorted tetramanganese-calcium cluster (CaMn4O5) as catalytic core. As an ubiquitous concept for fine-tuning and regulating the reactivity of the active site of metalloenzymes, the surrounding protein domain creates a sophisticated environment that promotes substrate preorganization through secondary, noncovalent interactions such as hydrogen bonding or electrostatic interactions. Based on the high-resolution X-ray structure of PSII, several water channels were identified near the active site, which are filled with extensive hydrogen-bonding networks of preorganized water molecules, connecting the OEC with the protein surface. As an integral part of the outer coordination sphere of natural metalloenzymes, these channels control the substrate and product delivery, carefully regulate the proton flow by promoting pivotal proton-coupled electron transfer processes, and simultaneously stabilize short-lived oxidized intermediates, thus highlighting the importance of an ordered water network for the remarkable efficiency of the natural OEC.Transferring this concept from nature to the engineering of artificial metal catalysts for fuel production has fostered the fascinating field of metallosupramolecular chemistry by generating defined cavities that conceptually mimic enzymatic pockets. However, the application of supramolecular approaches to generate artificial water oxidation catalysts remained scarce prior to our initial reports, since such molecular design strategies for efficient activation of substrate water molecules in confined nanoenvironments were lacking. In this Account, we describe our research efforts on combining the state-of-the art Ru(bda) catalytic framework with structurally programmed ditopic ligands to guide the water oxidation process in defined metallosupramolecular assemblies in spatial proximity. We will elucidate the governing factors that control the quality of hydrogen-bonding water networks in multinuclear cavities of varying sizes and geometries to obtain high-performance, state-of-the-art water oxidation catalysts. Pushing the boundaries of artificial catalyst design, embedding a single catalytic Ru center into a well-defined molecular pocket enabled sophisticated water preorganization in front of the active site through an encoded basic recognition site, resulting in high catalytic rates comparable to those of the natural counterpart OEC-PSII.To fully explore their potential for solar fuel devices, the suitability of our metallosupramolecular assemblies was demonstrated under (electro)chemical and photocatalytic water oxidation conditions. In addition, testing the limits of structural diversity allowed the fabrication of self-assembled linear coordination oligomers as novel photocatalytic materials and long-range ordered covalent organic framework (COF) materials as recyclable and long-term stable solid-state materials for future applications.
Collapse
Affiliation(s)
- Niklas Noll
- Institut für Organische Chemie
& Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie
& Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
4
|
Qiu Z, Deng H, Neumann CN. Site-Isolated Rhodium(II) Metalloradicals Catalyze Olefin Hydrofunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401375. [PMID: 38314637 DOI: 10.1002/anie.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Rh(II) porphyrin complexes display pronounced metal-centered radical character and the ability to activate small molecules under mild conditions, but catalysis with Rh(II) porphyrins is extremely rare. In addition to facile dimerization, Rh(II) porphyrins readily engage in kinetically and thermodynamically facile reactions involving two Rh(II) centers to generate stable Rh(III)-X intermediates that obstruct turnover in thermal catalysis. Here we report site isolation of Rh(II) metalloradicals in a MOF host, which not only protects Rh(II) metalloradicals against dimerization, but also allows them to participate in thermal catalysis. Access to PCN-224 or PCN-222 in which the porphyrin linkers are fully metalated by Rh(II) in the absence of any accompanying Rh(0) nanoparticles was achieved via the first direct MOF synthesis with a linker containing a transition-metal alkyl moiety, followed by Rh(III)-C bond photolysis.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hao Deng
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Abate PO, Juárez VM, Baraldo LM. Coupling between two Ru(bda) catalysts bridged by a trans-dicyano complex. Dalton Trans 2024; 53:1575-1585. [PMID: 38164735 DOI: 10.1039/d3dt03220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We have prepared two trimetallic complexes [{Ru(bda)(DMSO)(μ-CN)}2Ru(L)4] (with bda = 2,2'-bipyridine-6,6'-dicarboxylate) where two {Ru(bda)} centers are bridged by a cyanide complex of the trans-Ru(L)4CN2 family (with L = pyridine and 4-tert-butylpyridine). The complex [{Ru(bda)(DMSO)(μ-CN)}2Ru(py)4] is fully soluble in aqueous solution and is a catalyst for the oxidation of water both chemically, using Ce(IV) at pH = 1 as the terminal oxidant, and electrochemically. Both reactions are first order in the complex and the resting state of the catalyst is the [RuVRuIII(py)4RuIV]2+ redox state. Electrochemical and spectroelectrochemical studies together with (TD)DFT calculations show that the coupling between the Ru(bda) fragments for the [RuIIIRuII(py)4RuIII]2+ and [RuIVRuII(py)4RuIV]2+ redox states is very weak, but significant for the [RuVRuII(py)4RuIV]2+ ion due to the orientation of the orbitals involved. This coupling affects the reactivity of the [RuVRuII(py)4RuIV]2+ redox state, making it a much slower catalyst towards the water oxidation reaction than [RuVRuIII(py)4RuIV]2+.
Collapse
Affiliation(s)
- Pedro O Abate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Virginia M Juárez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Luis M Baraldo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Velasco-Garcia L, Casadevall C. Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis. Commun Chem 2023; 6:263. [PMID: 38049562 PMCID: PMC10695942 DOI: 10.1038/s42004-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Artificial photosynthesis aims to produce fuels and chemicals from simple building blocks (i.e. water and carbon dioxide) using sunlight as energy source. Achieving effective photocatalytic systems necessitates a comprehensive understanding of the underlying mechanisms and factors that control the reactivity. This review underscores the growing interest in utilizing bioinspired artificial vesicles to develop compartmentalized photocatalytic systems. Herein, we summarize different scaffolds employed to develop artificial vesicles, and discuss recent examples where such systems are used to study pivotal processes of artificial photosynthesis, including light harvesting, charge transfer, and fuel production. These systems offer valuable lessons regarding the appropriate choice of membrane scaffolds, reaction partners and spatial arrangement to enhance photocatalytic activity, selectivity and efficiency. These studies highlight the pivotal role of the membrane to increase the stability of the immobilized reaction partners, generate a suitable local environment, and force proximity between electron donor and acceptor molecules (or catalysts and photosensitizers) to increase electron transfer rates. Overall, these findings pave the way for further development of bioinspired photocatalytic systems for compartmentalized artificial photosynthesis.
Collapse
Affiliation(s)
- Laura Velasco-Garcia
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain.
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
7
|
Feng Y, Sun W, Liang X, Dong X, Yang X, Hu C, Li B, Yang J, Ma B, Ding Y. Mononuclear ruthenium (II) complex covalently anchored on melem and g-C 3N 4 as efficient heterogeneous catalysts for chemical water oxidation. J Colloid Interface Sci 2023; 643:480-488. [PMID: 37088051 DOI: 10.1016/j.jcis.2023.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Ru-melem and Ru-C3N4 were synthesized by a simple and facile strategy to construct a novel covalently anchoring by introducing easily synthesized amide bond as a bridge connecting the Ru-terpy and melem or g-C3N4, respectively. The covalent anchoring of Ru complex on melem or C3N4 not only makes these materials exhibit water oxidation activity under CeIV-driven (CeIV = Ce(NH4)2(NO3)6) reaction condition, but also makes the obtained heterogeneous catalysts show higher catalytic activity than the corresponding homogeneous catalysts, which reveals that the covalent anchoring strategy of Ru complex is beneficial to improve the catalytic activity of homogeneous Ru catalysts. The synthetic method of hybrid catalysts offers an insightful strategy for enhancing water oxidation activity of molecular catalysts.
Collapse
Affiliation(s)
- Yu Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanjun Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiangming Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoyu Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xu Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunlian Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bonan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junyi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baochun Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|