1
|
Nour Eddine N, Meslong L, Cordier M, Arroyo Diaz I, Aloïse S, Devillard M, Alcaraz G. Photoresponsive Dioxazaborocanes-Containing Oligomers. Chemistry 2024; 30:e202402912. [PMID: 39207028 DOI: 10.1002/chem.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The synthetic methodology for the preparation of photoresponsive dioxazaborocanes-containing oligomers is developed. It relies on the transformation of the (diisopropylamino)boryl group (-BH(NiPr2)) into a dioxazaborocane unit in the presence of β-aminodiols and involves a bis-borylated dithienylethene photochromic unit. The photophysical properties of the obtained oligomers are evaluated as well as their processability for the preparation of spin-coated films. The photomechanical behavior of the resulting films is assessed via displacement tracking profile.
Collapse
Affiliation(s)
- Nour Nour Eddine
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Laurine Meslong
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Marie Cordier
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Ismael Arroyo Diaz
- LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, CNRS, UMR 8516, 59500, Lille, France
| | - Stéphane Aloïse
- LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, CNRS, UMR 8516, 59500, Lille, France
| | - Marc Devillard
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Gilles Alcaraz
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| |
Collapse
|
2
|
Sun Y, Wang Z, Xu H, Ma W, Sun CL, Wu J, Pan X. Highly Sensitive Solid Ratiometric Luminescent Thermometer Based on N,C-Chelating Four-Coordinate Organoboron Compounds. Inorg Chem 2024. [PMID: 39560503 DOI: 10.1021/acs.inorgchem.4c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Realizing ratiometric thermometers using single-component organic solid-state luminophores is attractive but challenging. Here, we synthesized a series of N,C-chelated tetra-coordinated organoboron compounds and characterized their structures. Among them, sample BN2Br can be used as a luminescent thermometer and exhibits a high temperature sensitivity (3.67% K-1), a wide response range of 120-280 K, and good reversibility, which is mainly due to the temperature-dependent intermolecular stacking effect in the solid state. The proposed ratiometric thermometry protocol may provide new insights for developing photonic thermometers.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhen Wang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao Xu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenming Ma
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
He Y, Qiao Y, Li Z, Feng W, Zhao Y, Tian W, Zhong Tang B, Yan H. Unconventional Luminescence Polymer with Color-Tunability based on Solvent-Induced Electrostatic Potential Distribution of Fluorophore. Angew Chem Int Ed Engl 2024; 63:e202413425. [PMID: 39136193 DOI: 10.1002/anie.202413425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 10/17/2024]
Abstract
Tuning full-color emission of polymers holds significant promise. However, preparing unconventional luminescence polymers with color-tunability in dilute solution and understanding the relationship between non-covalent interactions and luminescent behavior remains a great challenge. We report two emitters (P1 and P2) incorporating tetracoordinate boron. The P1 with non-conjugated D-π-A structure, exhibited red delayed fluorescence at 645 nm with quantum yield of 9.15 % in aggregates. Notably, the emission wavelength of P1 can be tuned from 418 to 588 nm at different solvent. Similarly, the emission wavelength of P2 can also be adjusted by manipulating the interactions between the solvent and fluorophore. Experimental characterization and theoretical calculations indicate that the B←N bond and electronic interactions between solvent and fluorophore significantly regulate the equilibrium the electrostatic potential (ESP) and the intramolecular O⋅⋅⋅O interactions of P1, thereby modulating its emission wavelength. Additionally, these polymers showed excellent potential in fluoride ions detection. This work provides new insights into the complex effects of intermolecular interactions on luminescent properties.
Collapse
Affiliation(s)
- Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Yujie Qiao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Zheng Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Yan Zhao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, Shenzhen, Guangdong, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710129, Xi'an, China
| |
Collapse
|
4
|
Tao Y, Xue Y, Wang F, Shan L, Ni Z, Lan Y, Zhang P, Wang Y, Liu J. Polyurethane Vitrimers Engineered with Nitrogen-Coordinating Cyclic Boronic Diester Bonds for Sustainable Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408557. [PMID: 39420697 DOI: 10.1002/smll.202408557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Flexible bioelectronic devices seamlessly interface with organs and tissues, offering unprecedented opportunity for timely prevention, early diagnosis, and medical therapies. However, the majority of flexible substrates utilized in bioelectronics still encounter significant challenges in terms of recyclability and reprocessing, leading to the accumulation of environmentally and biologically hazardous toxic waste. Here, the study reports the design of recyclable polyurethane (PU) vitrimers engineered with internal boron-nitrogen coordination bonds that can reversibly dissociate to boronic acids and hydroxyl, or undergo metathesis reaction following an associative pathway. The study demonstrates the capacity of these recyclable PU vitrimers as flexible substrates in various wearable and implantable bioelectronic applications, achieving high-quality electrophysiological recordings and stimulation. Furthermore, the study establishes a sustainable recycling process by reconstructing a range of bioelectronic devices from the recycled PU vitrimers without compromising the mechanical performance. This closed-loop approach not only addresses the critical challenge of the reclaiming medical electronic waste but also paves the way for the development of sustainable flexible bioelectronics for healthcare applications.
Collapse
Affiliation(s)
- Yue Tao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Fucheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yunting Lan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Narita H, Min H, Kubo N, Hattori I, Yasuda T, Yamaguchi S. Bis-Ortho-Donor-Modification of Boracyclic π-Electron Systems beyond Steric Protection to Produce Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2024; 63:e202405412. [PMID: 38714489 DOI: 10.1002/anie.202405412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/10/2024]
Abstract
Polycyclic π-conjugated compounds that contain tricoordinate boron atoms at their periphery represent an attractive class of materials with electron-accepting character. Their molecular design generally requires the introduction of a bulky aryl group onto the boron atom, where it provides predominantly kinetic stabilization. The addition of extra functionality to the aryl group on the boron atom can be expected to further expand the potential utility of this class of materials. Herein, we report the synthesis of a series of boracyclic π-conjugated molecules with firm ortho B⋅⋅⋅N nonbonding interactions by introducing N-containing electron-donors at the ortho-positions of the aryl group on the boron atom. X-ray crystallographic analysis revealed that the combination of a planar boracyclic π-skeleton with only sp2 carbons and a strong electron-donating phenothiazine moiety results in a particularly short B⋅⋅⋅N distance. Theoretical study provided insights into the inherent nature of the B⋅⋅⋅N interaction. Owing to their donor-acceptor (D-A) structures, these molecules exhibit substantially red-shifted fluorescence in solution, albeit that the fluorescence quantum yields (ΦF) are low. In contrast, when incorporated into films, these compounds exhibit thermally activated delayed fluorescence (TADF) with improved ΦF values. Organic light-emitting diodes (OLEDs) fabricated using the ortho-donor-substituted derivatives exhibit orange-red electroluminescence.
Collapse
Affiliation(s)
- Hiroki Narita
- Department of Chemistry, Graduate School of Science, Research Center for Materials Science (RCMS), Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hyukgi Min
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nanami Kubo
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Izumi Hattori
- Department of Chemistry, Graduate School of Science, Research Center for Materials Science (RCMS), Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Takuma Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Research Center for Materials Science (RCMS), Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
6
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
7
|
Xu WW, Chen Y, Xu X, Liu Y. Light and Heat-Driven Flexible Solid Supramolecular Polymer Displaying Phosphorescence and Reversible Photochromism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311087. [PMID: 38335310 DOI: 10.1002/smll.202311087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Herein, a type of light- and heat-driven flexible supramolecular polymer with reversibly long-lived phosphorescence and photochromism is constructed from acrylamide copolymers with 4-phenylpyridinium derivatives containing a cyano group (P-CN, P-oM, P-mM), sulfobutylether-β-cyclodextrin (SBCD), and polyvinyl alcohol (PVA). Compared to their parent solid polymers, these flexible supramolecules based on the non-covalent cross-linking of copolymers, SBCD, and PVA efficiently boost the phosphorescence lifetimes (723.0 ms for P-CN, 623.0 ms for P-oM, 945.8 ms for P-mM) through electrostatic interaction and hydrogen bonds. The phosphorescence intensity/lifetime, showing excellent responsiveness to light and heat, sharply decreased after irradiation with a 275 nm flashlight or sunlight and gradually recovered through heating. This is accompanied by the occurrence and fading of visible photochromism, manifesting as dark green for P-CN and pink for P-oM and P-mM. These reversible photochromism and phosphorescence behaviors are mainly attributed to the generation and disappearance of organic radicals in the 4-phenylpyridinium derivatives with a cyano group, which can guide tunable luminescence and photochromism.
Collapse
Affiliation(s)
- Wen-Wen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, P. R. China
| |
Collapse
|
8
|
Chen JF, Gao QX, Yao H, Shi B, Zhang YM, Wei TB, Lin Q. Recent advances in circularly polarized luminescence of planar chiral organic compounds. Chem Commun (Camb) 2024; 60:6728-6740. [PMID: 38884278 DOI: 10.1039/d4cc01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
9
|
Xu W, Wang B, Liu S, Fang W, Jia Q, Liu J, Bo C, Yan X, Li Y, Chen L. Urea-formaldehyde resin room temperature phosphorescent material with ultra-long afterglow and adjustable phosphorescence performance. Nat Commun 2024; 15:4415. [PMID: 38789444 PMCID: PMC11126683 DOI: 10.1038/s41467-024-48744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organic room-temperature phosphorescence materials have attracted extensive attention, but their development is limited by the stability and processibility. Herein, based on the on-line derivatization strategy, we report the urea-formaldehyde room-temperature phosphorescence materials which are constructed by polycondensation of aromatic diamines with urea and formaldehyde. Excitingly, urea-formaldehyde room-temperature phosphorescence materials achieve phosphor lifetime up to 3326 ms. There may be two ways to enhance phosphorescence performance, one is that the polycondensation of aromatic diamine with urea and formaldehyde promotes spin-orbit coupling, and another is that the imidazole derivatives derived from the condensation of aromatic o-diamine with formaldehyde maintains low levels of energy level difference and spin-orbit coupling, thus achieving ultra-long afterglow. Surprisingly, urea-formaldehyde room-temperature phosphorescence materials exhibit tunable phosphorescence emission in electrostatic field. Accordingly, 1,4-phenylenediamine, urea, and formaldehyde are copolymerized and self-assembled into phosphorescence microspheres with different electrostatic potential strengths. By mixing 1 wt% 1,4-phenylenediamine polycondensation microspheres with 1,4-phenylenediamine free microspheres, phosphor lifetime of the composite could be regulated from 27 ms to 123 ms. Moreover, vulcanization process enables precise shaping of urea-formaldehyde room-temperature phosphorescence materials. This work not only demonstrates that urea-formaldehyde room-temperature phosphorescence materials are promising candidates for organic phosphors, but also exhibits the phenomenon of electrostatically regulated phosphorescence.
Collapse
Affiliation(s)
- Wensheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, PR China.
| | - Shuai Liu
- Shaoxing Xingxin New Materials Co., Ltd, Shaoxing, Zhejiang, PR China
| | - Wangwang Fang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China
- Shaoxing Xingxin New Materials Co., Ltd, Shaoxing, Zhejiang, PR China
| | - Qinglong Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jiayi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Changchang Bo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, PR China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, PR China.
| |
Collapse
|
10
|
Tu L, Chen Y, Song X, Jiang W, Xie Y, Li Z. Förster Resonance Energy Transfer: Stimulus-Responsive Purely Organic Room Temperature Phosphorescence through Dynamic B-N bond. Angew Chem Int Ed Engl 2024; 63:e202402865. [PMID: 38415964 DOI: 10.1002/anie.202402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Recently, stimulus-responsive organic materials with room-temperature phosphorescence (RTP) properties have attracted significant attention owing to their potential applications in chemical sensing, anticounterfeiting, and displays. However, molecular design currently lacks systematicity and effectiveness. Herein, we report a capture-release strategy for the construction of reversible RTP via B/N Lewis pairs. Specifically, the RTP of the Lewis acid of 7-bromo-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (BrBA) can be deactivated through capturing by the Lewis base, N,N-diphenyl-4-(pyridin-4-yl)aniline (TPAPy), and reactivated by dissociation of B-N bonds to release BrBA. Reversible RTP is attributed to the exceptional self-assembly capability of BrBA, whereas the tunable RTP colors are derived from distinct Förster resonance energy transfer (FRET) processes. The potential applications of RTP materials in information storage and anti-counterfeiting were also experimentally validated. The capture-release approach proposed in this study offers an effective strategy for designing stimulus-responsive materials.
Collapse
Affiliation(s)
- Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiaojuan Song
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wanqing Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, Fujian, 350207, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, Fujian, 350207, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
11
|
Nie F, Yan D. Photo-Controllable Ultralong Room-Temperature Phosphorescence: State of the Art. Chemistry 2024; 30:e202303611. [PMID: 38072832 DOI: 10.1002/chem.202303611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 01/05/2024]
Abstract
In this concept, we showcase the upsurge in the studies of dynamic ultralong room-temperature phosphorescence (RTP) materials containing inorganic and/or organic components as versatile photo-responsive platforms. The goal is to provide a comprehensive analysis of photo-controllable RTP, and meanwhile delve into the underlying RTP properties of various classes of photochromic materials including metal-organic complexes, organic-inorganic co-crystals, purely organic small molecules and organic polymers. In particular, the design principles governing the integration of the photochromic and RTP moieties within a single material system, and the tuning of dynamic RTP in response to light are emphasized. As such, this concept sheds light on the challenges and opportunities of using these tunable RTP materials for potential applications in optoelectronics, particularly highlighting their use of reversible information encryption, erasable light printing and rewritable smart paper.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
12
|
Marsili E, Curchod BFE. A Theoretical Perspective on the Photochemistry of Boron-Nitrogen Lewis Adducts. J Phys Chem A 2024; 128:996-1008. [PMID: 38236050 PMCID: PMC10875676 DOI: 10.1021/acs.jpca.3c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Boron-Nitrogen (B-N) Lewis adducts form a versatile family of compounds with numerous applications in functional molecules. Despite the growing interest in this family of compounds for optoelectronic applications, little is currently known about their photophysics and photochemistry. Even the electronic absorption spectrum of ammonia borane, the textbook example of a B-N Lewis adduct, is unavailable. Given the versatility of the light-induced processes exhibited by these molecules, we propose in this work a detailed theoretical study of the photochemistry and photophysics of simple B-N Lewis adducts. We used advanced techniques in computational photochemistry to identify and characterize the possible photochemical pathways followed by ammonia borane and extended this knowledge to the substituted B-N Lewis adducts pyridine-borane and pyridine-boric acid. The photochemistry observed for this series of molecules allows us to extract qualitative rules to rationalize the light-induced behavior of more complex B-N-containing molecules.
Collapse
Affiliation(s)
- Emanuele Marsili
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Basile F. E. Curchod
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
13
|
Mu Q, Liu H, Song Y, Wang CK, Lin L, Xu Y, Fan J. Theoretical exploration of the bromine substitution effect and hydrostatic pressure responsive mechanism for room temperature phosphorescence. Phys Chem Chem Phys 2023; 25:23207-23221. [PMID: 37605930 DOI: 10.1039/d3cp02770h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Stimulus-responsive organic room temperature phosphorescence (RTP) materials with long lifetimes, high efficiencies and tunable emission properties have broad applications. However, the amounts and species of efficient RTP materials are far from meeting the requirements and the inner stimulus-responsive mechanisms are unclear. Therefore, developing efficient stimulus-responsive RTP materials is highly desired and the relationship between the molecular structures and luminescent properties of RTP materials needs to be clarified. Based on this point, the influences of different substitution sites of Br on the luminescent properties of RTP molecules are studied by the combined quantum mechanics and molecular mechanics (QM/MM) coupled with thermal vibration correlation function (TVCF) theory. Moreover, the hydrostatic pressure effect on the efficiencies and lifetimes is explored and the inner mechanism is illustrated. The results show that, for the exciton conversion process, the o-substitution molecule possesses the largest spin-orbit coupling (SOC) value (〈S1|Ĥso|T1〉) in the intersystem crossing (ISC) process and this is conducive to the accumulation of triplet excitons. However, for the energy consumption process, the large SOC value (〈S0|Ĥso|T1〉) for the p-substitution molecule brings a fast non-radiative decay rate, and the small SOC value for the m-substitution molecule generates a decreased non-radiative decay rate which is helpful for realizing long lifetime emission. Keeping with this perspective, the conflict between high exciton utilization and long RTP emission needs to be balanced rather than enhancing the SOC effect by simply adding heavy atoms in RTP systems. Through regulating the molecular stacking modes by the hydrostatic pressure effect, the inner stimulus-responsive mechanism is revealed. The data of 〈S1|Ĥso|T1〉 in the ISC process remain almost unchanged, while 〈S0|Ĥso|T1〉 values and transition dipole moments are sensitive to the hydrostatic pressure. Under 1 GPa, the RTP molecule achieves a maximum efficiency (81.17%) and long lifetime (2.72 ms) with the smallest SOC and decreased non-radiative decay rate. To our knowledge, this is the first time that the hydrostatic pressure responsive mechanism for RTP molecules is revealed from a theoretical perspective, and the relationships between molecular structures and luminescent properties are detected. Our work could facilitate the development of high performance RTP molecules and expand their applications in multilevel information encryption.
Collapse
Affiliation(s)
- Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuanyuan Xu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China
| |
Collapse
|
14
|
Kawashiro M, Mori T, Ito M, Ando N, Yamaguchi S. Photodissociative Modules that Control Dual-Emission Properties in Donor-π-Acceptor Organoborane Fluorophores. Angew Chem Int Ed Engl 2023; 62:e202303725. [PMID: 37014627 DOI: 10.1002/anie.202303725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Donor-π-acceptor fluorophores that consist of an electron-donating amino group and an electron-accepting triarylborane moiety generally exhibit substantial solvatochromism in their fluorescence while retaining high fluorescence quantum yields even in polar media. Herein, we report a new family of this compound class, which bears ortho-P(=X)R2 -substituted phenyl groups (X=O or S) as a photodissociative module. The P=X moiety that intramolecularly coordinates to the boron atom undergoes dissociation in the excited state, giving rise to dual emission from the corresponding tetra- and tricoordinate boron species. The susceptibility of the systems to photodissociation depends on the coordination ability of the P=O and P=S moieties, whereby the latter facilitates dissociation. The intensity ratios of the dual emission bands are sensitive to environmental parameters, including temperature, solution polarity, and the viscosity of the medium. Moreover, precise tuning of the P(=X)R2 group and the electron-donating amino moiety led to single-molecule white emission in solution.
Collapse
Affiliation(s)
- Midori Kawashiro
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Tatsuya Mori
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
15
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
16
|
Sun Y, Ding H, Tang M, Wen J, Yue S, Peng Y, Zheng L, Shi Y, Cao Q. Multicolor Adjustable B-N Molecular Switches: Simple, Efficient, Portable, and Visual Identification of Butanol Isomers. Anal Chem 2023; 95:5594-5600. [PMID: 36942711 DOI: 10.1021/acs.analchem.2c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
As intelligent probes, dynamic and controllable molecular switches are useful tools for probing and intervening in life processes. However, the types and properties of molecular switches are still relatively single and often can only make two actions: "off" and "on". Therefore, the development of novel molecular switches with multiple colors and multiple instructions is very challenging. Herein, we propose a novel strategy based on the instability of the Lewis acid-base pair (boron (B) and nitrogen (N)), such as introducing the Schiff base (C═N) group into the aminoborane skeleton and preparing the novel molecular switches BN-HDZ and BN-HDZ-N. These two molecules were found to have good multicolor fluorescence switching capability for methanol. Surprisingly, the compound BN-HDZ-N shows unprecedented visual identification for the butanol isomers and could be made into a portable strip for simple and rapid visual identification of the four isomers of butanol, promising an alternative to conventional Lucas reagents. This provides a novel strategy for the design and fabrication of novel multicolor-tunable molecular switches with visual identification of isomers.
Collapse
Affiliation(s)
- Yitong Sun
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Huangting Ding
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Meng Tang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jingyi Wen
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Shiwen Yue
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ye Peng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Yonggang Shi
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|