1
|
Wang Y, Chai J, Jiao J, Kong X, Zhang T, Ye N, Hu Z, Wu Y, Li C. K 4Cd 3Ge 4O 13: A Congruent-Melting Germanate Nonlinear Optical Crystal with a Moderate Second-Harmonic Generation Intensity and Broad Transparent Window. Inorg Chem 2024; 63:19482-19488. [PMID: 39348092 DOI: 10.1021/acs.inorgchem.4c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mid-infrared (IR) nonlinear optical (NLO) materials have generated extensive research interest because of their crucial role in laser technology applications. Here, we report the synthesis of a novel cadmium germanate NLO crystal, K4Cd3Ge4O13, using spontaneous crystallization. K4Cd3Ge4O13 demonstrates a distinct three-dimensional structural framework characterized by twisted [Ge4O13] and [Cd3O10] clusters, composed of [GeO4], [CdO4], [CdO5], and [CdO6] basic building units, respectively, which represents an unprecedented structural feature. The title compound undergoes a desirable congruent melting behavior at about 727 °C. Notably, K4Cd3Ge4O13 demonstrates a short UV cutoff edge at 261 nm, coupled with a wide energy gap of 4.4 eV, and maintains an extended IR transparency window at around 6.0 μm. More importantly, it demonstrates a strong second-harmonic generation activity comparable to that of KH2PO4 (KDP) at 1064 nm. Theoretical analyses further elucidate that the remarkable optical performances of K4Cd3Ge4O13 are predominantly attributed to the cooperative effects of Ge-O and Cd-O bond-based motifs. These desired characteristics underscore the potential of K4Cd3Ge4O13 as a good candidate material for mid-IR NLO applications.
Collapse
Affiliation(s)
- Yujun Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Chai
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jinmiao Jiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Xianghao Kong
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Tinghui Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Conggang Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Qi JL, Guo Y, Wu J, Huang QF, Xu JJ, Yan SF, Liu W, Guo SP. Near Ultraviolet-Excitable Cyan-Emissive Hybrid Copper(I) Halides Nonlinear Optical Crystals with Near-Unity Photoluminescence Quantum Yield and High-Efficiency X-ray Scintillation. Angew Chem Int Ed Engl 2024; 63:e202407074. [PMID: 38978178 DOI: 10.1002/anie.202407074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Designing and synthesizing multifunctional hybrid copper halides with near ultraviolet (NUV) light-excited high-energy emission (<500 nm) remains challenging. Here, a pair of broadband-excited high-energy emitting isomers, namely, α-/β-(MePh3P)2CuI3 (MePh3P=methyltriphenylphosphonium), were synthesized. α-(MePh3P)2CuI3 with blue emission peaking at 475 nm is firstly discovered wherein its structure contains regular [CuI3]2- triangles and crystallizes in centrosymmetric space group P21/c. While β-(MePh3P)2CuI3 featuring distorted [CuI3]2- planar triangles shows inversion symmetry breaking and crystallizes in the noncentrosymmetric space group P21, which exhibits cyan emission peaking at 495 nm with prominent near-unity photoluminescence quantum yield and the excitation band ranging from 200 to 450 nm. Intriguingly, β-(MePh3P)2CuI3 exhibits phase-matchable second-harmonic generation response of 0.54×KDP and a suitable birefringence of 0.06@1064 nm. Furthermore, β-(MePh3P)2CuI3 also can be excited by X-ray radioluminescence with a high scintillation light yield of 16193 photon/MeV and an ultra-low detection limit of 47.97 nGy/s, which is only 0.87 % of the standard medical diagnosis (5.5 μGy/s). This work not only promotes the development of solid-state lighting, laser frequency conversion and X-ray imaging, but also provides a reference for constructing multifunctional hybrid metal halides.
Collapse
Affiliation(s)
- Jing-Li Qi
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Jiajing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Qiao-Feng Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Jun-Jie Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Shu-Fang Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Material and Energy, Yunnan University, Kunming, 650000, P. R. China
| |
Collapse
|
3
|
Hou J, Wang J, Liang F, Ma S, Yu H, Wu H, Ye N, Hu Z, Wu Y. La 3Ga 5M 0.5Sn 0.5O 14, (M = Ge, Si): Design and Synthesis of Two Langasite Nonlinear Optical Materials with Large Second Harmonic Generation and Birefringence Induced by Distorted (Sn/M)O 6 Octahedra. Inorg Chem 2024; 63:14550-14558. [PMID: 39051734 DOI: 10.1021/acs.inorgchem.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nonlinear optical (NLO) coherent light sources are widely applied in many areas of science and technology. As the core medium, the NLO material is required to have a wide transparent range, a large NLO response, and a high laser damaged threshold (LDT). It is common knowledge that langasite (La3Ga5SiO14, LGS) crystal has an underdeveloped second-harmonic generation (SHG) coefficient and a small birefringence, which seriously restrict its application in the NLO field, despite that it has a broad transmittance spectrum and a moderate LDT. Herein, we have successfully obtained novel langasite NLO crystals LGSS (La3Ga5Si0.5Sn0.5O14) and LGGS (La3Ga5Ge0.5Sn0.5O14), with short UV absorption edges of 209 and 212 nm, respectively. Incorporating heavy ions Sn4+ into the structure, a distorted BO6 octahedron was adjusted by the radius difference between Sn4+ and Si4+/Ge4+, which caused the strong SHG responses in LGSS (∼10.77 × KDP) and LGGS (∼9.23 × KDP) and increased birefringences of 0.034 and 0.025, respectively. Besides, they also had large energy band gaps (4.95 eV for LGSS, and 4.93 eV for LGGS), which allowed high LDTs with LGSS of 1.3 GW/cm2 and LGGS of 813 MW/cm2. This work demonstrates a new strategy to enhance SHG responses and birefringence for existing NLO materials and enriches langasite family crystals.
Collapse
Affiliation(s)
- Jingxuan Hou
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| | - Jiajia Wang
- School of Materials Science and Engineering, Linyi University, Linyi, Shandong276000, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China
| | - Shihui Ma
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin300384, China
| |
Collapse
|
4
|
Kong Y, Wang H, Zhao W, Sun Q, Li J, Pan S. β-CsHg 2I 5, a compound with rare [Hg 2I 5] dimers and large optical anisotropy. Dalton Trans 2024; 53:12090-12097. [PMID: 38967448 DOI: 10.1039/d4dt01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Hg-based compounds show abundant structural diversity and distinguished properties. Herein, a new phase transition compound CsHg2I5 was reported. The high-temperature phase β-CsHg2I5 with rare [Hg2I5] dimers was synthesized by the flux method at 573 K, and it shows a reversible phase transition at a low temperature of ∼100 K to form the low-temperature phase α-CsHg2I5. The two phases crystallize in the same P21/c space group, with different crystal structures. β-CsHg2I5 is composed of rare [Hg2I5] dimers and [CsI11] polyhedral units, while α-CsHg2I5 is composed of [Hg4I11] and [CsI10] units. The experimental band gap of β-CsHg2I5 was found to be 2.58 eV. Owing to the presence of [Hg2I5]∞ pseudo-layers, β-CsHg2I5 exhibits large optical anisotropy with a calculated birefringence of 0.132@1064 nm. Meanwhile, β-CsHg2I5 is a congruent compound and the congruent point is ∼481 K. Theoretical calculations indicate that the rare [Hg2I5] dimer is a nonlinear active unit, which can be used as a new fundamental building block for the design of advanced nonlinear optical materials. Moreover, a CsI-HgI2 pseudo-binary diagram was drawn. The results enrich the structural diversity of Hg-based halides and give some insights into the development of new functional materials based on rare [Hg2I5] dimers.
Collapse
Affiliation(s)
- Yingying Kong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Hongshan Wang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Wang Zhao
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Qi Sun
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Junjie Li
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shilie Pan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
| |
Collapse
|
5
|
Wu T, Jiang X, Duanmu K, Wu C, Lin Z, Huang Z, Humphrey MG, Zhang C. Secondary-Bond-Driven Construction of a Polar Material Exhibiting Strong Broad-Spectrum Second-Harmonic Generation and Large Birefringence. Angew Chem Int Ed Engl 2024; 63:e202318107. [PMID: 38116843 DOI: 10.1002/anie.202318107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Considerable effort has been invested in the development of non-centrosymmetric (NCS) inorganic solids for ferroelectricity-, piezoelectricity- and, particularly, optical nonlinearity-related applications. While great progress has been made, a persistent problem is the difficulty in constructing NCS materials, which probably stems from non-directionality and unsaturation of the ionic bonds between metal counter-cations and covalent anionic modules. We report herein a secondary-bond-driven approach that circumvents the cancellation of dipole moments between adjacent anionic modules that has plagued second-harmonic generation (SHG) material design, and which thereby affords a polar structure with strong SHG properties. The resultant first NCS counter-cation-free iodate, VO2 (H2 O)(IO3 ) (VIO), a new class of iodate, crystallizes in a polar lattice with∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] zigzag chains connected by weak hydrogen bonds and intermolecular forces. VIO exhibits very large SHG responses (18 × KH2 PO4 @ 1200 nm, 1.5 × KTiOPO4 @ 2100 nm) and sufficient birefringence (0.184 @ 546 nm). Calculations and crystal structure analysis attribute the large SHG responses to consistent polarization orientations of the∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] chains controlled by secondary bonds. This study highlights the advantages of manipulating the secondary bonds in inorganic solids to control NCS structure and optical nonlinearity, affording a new perspective in the development of high-performance NLO materials.
Collapse
Affiliation(s)
- Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Wu T, Jiang X, Duanmu K, Wu C, Lin Z, Huang Z, Humphrey MG, Zhang C. Giant Optical Anisotropy in a Covalent Molybdenum Tellurite via Oxyanion Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306670. [PMID: 38288532 DOI: 10.1002/advs.202306670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Indexed: 02/07/2024]
Abstract
Large birefringence is a crucial but hard-to-achieve optical parameter that is a necessity for birefringent crystals in practical applications involving modulation of the polarization of light in modern opto-electronic areas. Herein, an oxyanion polymerization strategy that involves the combination of two different types of second-order Jahn-Teller distorted units is employed to realize giant anisotropy in a covalent molybdenum tellurite. Mo(H2O)Te2O7 (MTO) exhibits a record birefringence value for an inorganic UV-transparent oxide crystalline material of 0.528 @ 546 nm, which is also significantly larger than those of all commercial birefringent crystals. MTO has a UV absorption edge of 366 nm and displays a strong powder second-harmonic generation response of 5.4 times that of KH2PO4. The dominant roles of the condensed polytellurite oxyanions [Te8O20]8- in combination with the [MoO6]6- polyhedra in achieving the giant birefringence in MTO are clarified by structural analysis and first-principles calculations. The results suggest that polymerization of polarizability-anisotropic oxyanions may unlock the promise of birefringent crystals with exceptional birefringence.
Collapse
Affiliation(s)
- Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Jiao J, Li C, She Y, Shi H, Di W, Ye N, Hu Z, Wu Y. Li 13YGe 4O 16: A Mid-infrared Rare-Earth Germanate Nonlinear Optical Crystal Featuring a Broad Transmission Range and an Enlarged Band Gap. Inorg Chem 2024; 63:3986-3991. [PMID: 38359456 DOI: 10.1021/acs.inorgchem.3c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound adopts the asymmetric space group Cmc21 (no. 36), characterized by isolated [YO6] and [GeO4] structural motifs with Li+ cations located in the channel. Notably, Li13YGe4O16 presents a short ultraviolet cutoff edge at 240 nm, indicative of an enlarged band gap of 4.96 eV and showcases a wide mid-infrared transmission region exceeding 6.0 μm. Moreover, Li13YGe4O16 features exceptional thermal stability and moderate second harmonic generation (SHG) intensity. Additionally, a theoretical analysis suggests that the distorted [YO6] octahedra. [GeO4] and [LiO4] tetrahedra play a significant role in the optical activities of Li13YGe4O16. These attributes endow Li13YGe4O16 with the potential to serve as a new mid-IR nonlinear optical (NLO) crystal and enrich the structural chemistry of germanates.
Collapse
Affiliation(s)
- Jinmiao Jiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Conggang Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yuheng She
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Haiyan Shi
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Wenhao Di
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
8
|
Lv Z, Li R. Na 12(NbO) 3(PO 4) 7: A Congruent Melting Nonlinear Optical Crystal with Large NbO 6 Distortion and High Laser-Induced Damage Threshold. Inorg Chem 2024; 63:3610-3615. [PMID: 38329216 DOI: 10.1021/acs.inorgchem.3c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A new noncentrosymmetric crystal Na12(NbO)3(PO4)7 was successfully synthesized in the niobium phosphate system. Its structure characterizes isolated and highly distorted NbO6 octahedra joining with isolated PO4 groups to form a unit of a (Nb6P6O12) hexagonal star by sharing O atoms. In (Nb6P6O12) hexagonal stars, all Nb and P atoms are in a hexagonal star-like arrangement and all Na atoms are also in a hexagonal star-like arrangement, except for Na(3) and Na(10) atoms. Notably, it exhibits a strong phase-matched second harmonic response: 3 × KDP, which is rare in known niobium phosphate systems. Meanwhile, it also has a wide optically transparent window (0.29-4.44 μm) and a high laser-induced damage threshold (3.5 GW/cm2). More importantly, Na12(NbO)3(PO4)7 is a congruent melting compound that has the potential to be grown into large-sized single crystals by the Czochralski method. These excellent properties make it a promising candidate as a mid-infrared nonlinear optical crystal.
Collapse
Affiliation(s)
- Ziyan Lv
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rukang Li
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Cheng J, Yi G, Zhang Z, Long Y, Zeng H, Huang L, Zou G, Lin Z. In Situ Chiral Template Approach to Synthesize Homochiral Lead Iodides for Second-Harmonic Generation. Angew Chem Int Ed Engl 2024; 63:e202318385. [PMID: 38126929 DOI: 10.1002/anie.202318385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Homochiral halide perovskites have gained increasing attention because of their fascinating optoelectronic properties and prospective applications in laser technologies. However, the limited choice of chiral organic templates severely restricts their structural diversity and second-harmonic generation (SHG) effects. Here, we present an in situ chiral template approach for the synthesis of one-dimensional (1D) homochiral lead iodides. A chiral imine (L-ipp) template was generated in situ by reacting L-proline (L-pro) and acetone under ambient conditions. Notably, L-ipp can cooperate with L-pro to direct the formation of a homochiral lead iodide with dual chiral templates, which is unprecedented in crystalline metal halides. The homochiral lead iodide containing both L-ipp and L-pro shows a strong SHG response of 8.0 times that of KH2 PO4 (8.0×KDP). The SHG efficiency is one of the largest values reported to date for any homochiral lead halides under 1064 nm laser irradiation. A comparative study shows that homochiral 1D lead iodides containing either L-ipp or L-pro exhibit relatively weak SHG responses (≤1.0×KDP). This work demonstrates the advantage of using two different chiral templates over a single chiral template in enhancing the SHG responses of halide materials.
Collapse
Affiliation(s)
- Juan Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Gangji Yi
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ying Long
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
10
|
Zhu M, Wang J, Hou L, Yuan Y, Liu L, Chu Y, Huang C. AX·(H 2SeO 3) n (A = K, Cs; X = Cl, Br; n = 1, 2): A Series of Ionic Cocrystals as Promising UV Birefringent Materials with Large Birefringence and Wide Band Gap. Inorg Chem 2024; 63:2289-2297. [PMID: 38237039 DOI: 10.1021/acs.inorgchem.3c04371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The design and syntheses of new birefringent crystals will be of great importance in commercial applications and materials science. A series of ultraviolet (UV) birefringent crystals, AX·(H2SeO3)n (A = K, Cs; X = Cl, Br; n = 1, 2), with large sizes up to 23 × 6 × 3 mm3, was successfully synthesized by simple aqueous solution method. These four compounds belong to three different space groups. Isomorphic KCl·(H2SeO3)2 and CsCl·(H2SeO3)2 crystallize in the P 1 ¯ space group, while CsBr·(H2SeO3)2 and CsCl·H2SeO3 crystallize in the P21/m and P21/c space groups, respectively. They exhibit cocrystal structures composed of [2(H2SeO3)]∞ and [AX]∞ frameworks, ingeniously inheriting the large optical anisotropy of selenite and the wide band gap of alkali metal halide. And it proves that these compounds indeed possess large birefringence (0.1-0.17 at 532 nm) and short UV cutoff edges (227-239 nm), achieving a balance of optical properties. This research affords a simple and viable strategy for the design and syntheses of new UV birefringent crystals. Besides, it is also found that the n value and ionic size (A and X ions) have important influences on the crystal structures and optical properties of AX·(H2SeO3)n. And this will promote further understanding of the alkali metal halide selenite family.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Junbo Wang
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Hou
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yiwen Yuan
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lili Liu
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yaoqing Chu
- Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chunmei Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
11
|
Zhang L, Wang S, Zhang F, Yang Z, Hou X. K 5[B 3O 3F 4(OH)] 2(NO 3): the first hydroxyfluorooxoborate-nitrate with a short ultraviolet cutoff edge and large birefringence. Dalton Trans 2023; 52:13492-13496. [PMID: 37728022 DOI: 10.1039/d3dt02529b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The first hydroxyfluorooxoborate-nitrate mixed anion compound, K5[B3O3F4(OH)]2(NO3), was synthesized by the solution evaporation method. It displays a unique structure built by K+ cations, the hydroxylated and fluorinated six-membered ring [B3O3F4(OH)] and [NO3] groups. It possesses a band gap of 5.68 eV derived from the diffuse reflectance spectrum, which corresponds to an ultraviolet cutoff edge of 218 nm. First-principles calculations show that it has a large birefringence of 0.095 at 532 nm and the result of the response electron distribution anisotropy method indicates that all three anion groups contribute positively to the birefringence, verifying the synergic contributions from the multiple anion groups.
Collapse
Affiliation(s)
- Luyong Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shibin Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Fangfang Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wang Q, Dong XH, Huang L, Ok KM, Lin ZE, Zou GH. Cd 2 Nb 2 Te 4 O 15 : A Novel Pseudo-Aurivillius-Type Tellurite with Unprecedented Nonlinear Optical Properties and Excellent Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302797. [PMID: 37246267 DOI: 10.1002/smll.202302797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Oxides are emerging candidates for mid-infrared (mid-IR) nonlinear optical (NLO) materials. However, their intrinsically weak second harmonic generation (SHG) effects hinder their further development. A major design challenge is to increase the nonlinear coefficient while maintaining the broad mid-IR transmission and high laser-induced damage threshold (LIDT) of the oxides. In this study, it is reported on a polar NLO tellurite, Cd2 Nb2 Te4 O15 (CNTO), featuring a pseudo-Aurivillius-type perovskite layered structure composed of three types of NLO active groups, including CdO6 octahedra, NbO6 octahedra, and TeO4 seesaws. The uniform orientation of the distorted units induces a giant SHG response that is ≈31 times larger than that of KH2 PO4 , the largest value among all reported metal tellurites. Additionally, CNTO exhibits a large band gap (3.75 eV), a wide optical transparency window (0.33-14.5 µm), superior birefringence (0.12@ 546 nm), high LIDT (23 × AgGaS2 ), and strong acid and alkali resistance, indicating its potential as a promising mid-IR NLO material.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Xue-Hua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Kang-Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Zhi-En Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Guo-Hong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|