1
|
Foyle ÉM, Goodwin RJ, Cox CJT, Smith BR, Colebatch AL, White NG. Expedient Decagram-Scale Synthesis of Robust Organic Cages That Bind Sulfate Strongly and Selectively in Water. J Am Chem Soc 2024; 146:27127-27137. [PMID: 39312466 DOI: 10.1021/jacs.4c09930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Selective anion recognition remains a key challenge in supramolecular chemistry: only a very small number of systems that can function in water are known, and these nearly always preferentially bind hydrophobic anions. In this work, we report three robust hexa-cationic cages that can be prepared on scales up to 14 g in two simple and high-yielding steps from commercially available materials. One of these cages displays unusually strong sulfate binding in water (Ka = 12,000 M-1), and demonstrates high selectivity for this anion over H2PO4-/HPO42- in DMSO/buffer mixtures. These results demonstrate that relatively large, three-dimensional supramolecular hosts can be prepared in high yields and on large scales, and can be highly potent receptors.
Collapse
Affiliation(s)
- Émer M Foyle
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cameron J T Cox
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, Scotland, U.K
| | - Bailee R Smith
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Hu C, Severin K. Nanogels with Metal-Organic Cages as Functional Crosslinks. Angew Chem Int Ed Engl 2024; 63:e202403834. [PMID: 38579118 DOI: 10.1002/anie.202403834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
A dinuclear metal-organic cage with four acrylate side chains was prepared by self-assembly. Precipitation polymerization of the cage with N-isopropylacrylamide yielded a thermoresponsive nanogel. The host properties of the cage were retained within the gel matrix, endowing the nanogel with the capability to serve as a sorbent for chloride ions in water. Moreover, a heteroleptic cage with the drug abiraterone as co-ligand was integrated into a nanogel. The addition of chloride ions induced a structural rearrangement of the metal-ligand assembly, resulting in the gradual release of abiraterone.
Collapse
Affiliation(s)
- Chaolei Hu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Wu G, Zhuang SY, Xing J, Lin Q, Li ZT, Zhang DW. Modular Strategy for Constructing para-Cage[ n]arenes, meta-Cage[ n]arenes, and meta-Bimacrocyclic-Arenes. Org Lett 2024; 26:2007-2012. [PMID: 38442042 DOI: 10.1021/acs.orglett.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Here, we present a versatile modular strategy for crafting novel covalent organic cages (para-cage[n]arenes and meta-cage[n]arenes, n = 3,4) and bimacrocycles (meta-bimacrocyclic-arenes) with stable backbones and modifiable rims. These structures can be synthesized from commercially available aromatic multialdehydes in a three-step process: quantitative bromination, Suzuki-Miyaura reaction (yielding over 60%), and a rapid one-pot Friedel-Crafts reaction with paraformaldehyde. Notably, the cage[n]arenes exhibit a well-defined prismatic shape, and the bimacrocyclic-arenes display both dimeric and monomeric configurations.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Sheng-Yi Zhuang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jiabin Xing
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qihan Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
de Montmollin J, Solea AB, Chen DW, Fadaei-Tirani F, Severin K. Orientational Self-Sorting in Octahedral Palladium Cages: Scope and Limitations of the " cis Rule". Inorg Chem 2024; 63:4583-4588. [PMID: 38198590 DOI: 10.1021/acs.inorgchem.3c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Octahedral coordination cages of the general formula [Pd6L12](BF4)12 were obtained by combining [Pd(CH3CN)4](BF4)2 with heteroditopic N-donor ligands. Four different ligands were employed. These ligands have 3-pyridyl donor groups at one end and 4-pyridyl, imidazolyl, or triazolyl donor groups at the other end. According to a geometric analysis, cages with a cis configuration at the six metal centers should be preferred ("cis rule"). This prediction was corroborated by spectroscopic data and crystallographic analyses. Limitations of the "cis rule" were also encountered, and possible explanations are discussed.
Collapse
Affiliation(s)
- Jean de Montmollin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Atena B Solea
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Damien W Chen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Kay Severin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
5
|
Ghanbari B, Asadi Mofarrah L, Clegg JK. Selective Supramolecular Recognition of Nitroaromatics by a Fluorescent Metal-Organic Cage Based on a Pyridine-Decorated Dibenzodiaza-Crown Macrocyclic Co(II) Complex. Inorg Chem 2023; 62:7434-7445. [PMID: 37134276 DOI: 10.1021/acs.inorgchem.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two isomorphous fluorescent (FL) lantern-shaped metal-organic cages 1 and 2 were prepared by coordination-directed self-assembly of Co(II) centers with a new aza-crown macrocyclic ligand bearing pyridine pendant arms (Lpy). The cage structures were determined using single-crystal X-ray diffraction analysis, thermogravimetric, elemental microanalysis, FT-IR spectroscopy, and powder X-ray diffraction. The crystal structures of 1 and 2 show that anions (Cl- in 1 and Br- in 2) are encapsulated within the cage cavity. 1 and 2 bear two coordinated water molecules that are directed inside the cages, surrounded by the eight pyridine rings at the "bottom" and the "roof" of the cage. These hydrogen bond donors, π systems, and the cationic nature of the cages enable 1 and 2 to encapsulate the anions. FL experiments revealed that 1 could detect nitroaromatic compounds by exhibiting selective and sensitive fluorescence quenching toward p-nitroaniline (PNA), recommending a limit of detection of 4.24 ppm. Moreover, the addition of 50 μL of PNA and o-nitrophenol to the ethanolic suspension of 1 led to a significant large FL red shift, namely, 87 and 24 nm, respectively, which were significantly higher than the corresponding values observed in the presence of other nitroaromatic compounds. The titration of the ethanolic suspension of 1, with various concentrations of PNA (>12 μM) demonstrated a concentration-dependent emission red shift. Hence, the efficient FL quenching of 1 was capable of distinguishing the dinitrobenzene isomers. Meanwhile, the observed red shift (10 nm) and quenching of this emission band under the influence of a trace amount of o- and p-nitrophenol isomers also showed that 1 could discriminate between o- and p-nitrophenol. Replacement of the chlorido with a bromido ligand in 1 generated cage 2 which was a more electron-donating cage than 1. The FL experiments showed that 2 was partially more sensitive and less selective toward NACs than 1.
Collapse
Affiliation(s)
- Bahram Ghanbari
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Leila Asadi Mofarrah
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Haynes CJE, White NG. (Self) assembled news: recent highlights from the supramolecular chemistry literature (Quarter 1, 2023). Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2189346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
| | - Nicholas G. White
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|