1
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2025; 64:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Wen S, Bu J, Shen K. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Coupling To Access Chiral Secondary Benzylic Alcohols. J Org Chem 2024; 89:16134-16144. [PMID: 38327084 DOI: 10.1021/acs.joc.3c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Transition-metal-catalyzed asymmetric cross-coupling represents a powerful strategy for C-C bond formation and the synthesis of enantiomerically pure molecules. Here, we report a dual nickel/photoredox-catalyzed enantioselective reductive cross-coupling of aryl halides with α-bromobenzoates, readily generated from aliphatic aldehydes, to provide diverse chiral secondary benzylic alcohols that are important motifs in bioactive natural products and pharmaceuticals. This dual catalytic system features mild conditions, good functional group tolerance, broad substrate scope, excellent enantiocontrol, and avoidance of stoichiometric metal reductants, presenting great potential for late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Shun Wen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Bu
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
5
|
Lu S, Hu Z, Wang D, Xu T. Halogen-Atom Transfer Enabled Catalytic Enantioselective Coupling to Chiral Trifluoromethylated Alkynes via Dual Nickel and Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406064. [PMID: 38619363 DOI: 10.1002/anie.202406064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
With halogen-atom transfer as an effective tool, a novel catalytic enantioselective protocol to generate chiral trifluoromethylated alkynes has been established by a cooperative photoredox and nickel catalysis system, providing a straightforward and modular route to access this type of product in good yields and enantioselectivities. The halogen-atom transfer process is essential for the reaction and this novel strategy offers another promising way to utilize alkyl halides with highly negative reduction potentials. It firstly expands nickel-catalyzed asymmetric reductive cross-couplings of organohalides from the traditional single-electron transfer to halogen-atom transfer.
Collapse
Affiliation(s)
- Shanya Lu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. of China
| |
Collapse
|
6
|
Zhang B, Bai H, Zhan B, Wei K, Nie S, Zhang X. Deacylative arylation and alkynylation of unstrained ketones. SCIENCE ADVANCES 2024; 10:eado0225. [PMID: 38669332 PMCID: PMC11051662 DOI: 10.1126/sciadv.ado0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Ketones are ubiquitous in bioactive natural products, pharmaceuticals, chemical feedstocks, and synthetic intermediates. Hence, deacylative coupling reactions enable the versatile elaboration of a plethora of chemicals to access complex drug candidates and natural products. Here, we present deacylative arylation and alkynylation strategies for the synthesis of a wide range of alkyl-tethered arenes and alkynes from cyclic ketones and methyl ketones under dual nickel/photoredox catalysis. This reaction begins by generating a pre-aromatic intermediate (PAI) through the condensation of the ketone and N'-methylpicolino-hydrazonamide (MPHA), followed by the oxidative cleavage of the PAI α-C─C bond to form an alkyl radical, which is subsequently intercepted by a Ni complex, facilitating the formation of diverse C(sp3)-C(sp2)/C(sp) bonds with remarkable generality. This protocol features a one-pot reaction capability, high regioselectivity and ring-opening efficiency, mild reaction conditions, and a broad substrate scope with excellent functional group compatibility.
Collapse
Affiliation(s)
- Boyi Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hui Bai
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Kaihang Wei
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences and Department of Urology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
7
|
Xu W, Fan C, Hu X, Xu T. Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition. Angew Chem Int Ed Engl 2024; 63:e202401575. [PMID: 38357753 DOI: 10.1002/anie.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| | - Chao Fan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| |
Collapse
|
8
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|