1
|
Wu H, Wu L, Li Y, Dong W, Ma W, Li S, Xiao D, Huang P, Zhang X. Direct Epitaxial Growth of Polycrystalline MOF Membranes on Cu Foils for Uniform Li Deposition in Long-life Anode-free Li Metal Batteries. Angew Chem Int Ed Engl 2024:e202417209. [PMID: 39444275 DOI: 10.1002/anie.202417209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Anode-free Li-metal battery (AFLMB) is being developed as the next generation of advanced energy storage devices. However, the low plating and stripping reversibility of Li on Cu foil prevents its widespread application. A promising avenue for further improvement is to enhance the lithophilicity of Cu foils and optimise their surfaces through a metal-organic framework (MOF) functional layer. However, excessive binder usage in the current approaches obscures the active plane of the MOF, severely limiting its performance. In response to this challenge, MOF polycrystalline membrane technology has been integrated into the field of AFLMB in this work. The dense and seamless HKUST-1 polycrystalline membrane was deposited on Cu foil (HKUST-1 M@Cu) via an epitaxial growth strategy. In contrast to traditional MOF functional layers, this binder-free polycrystalline membrane fully exposes lithophilic sites, effectively reducing the nucleation overpotential and optimising the deposition quality of Li. Consequently, the Li plating layer becomes denser, eliminating the effects of dendrites. When coupled with LiFePO4 cathodes, the battery based on the HKUST-1 membrane exhibits excellent rate performance and cycling stability, achieving a high reversible capacity of approximately 160 mAh g-1 and maintaining a capacity retention of 80.9 % after 1100 cycles.
Collapse
Affiliation(s)
- Haiyang Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yang Li
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wendi Dong
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wenyu Ma
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Shaopeng Li
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Dewei Xiao
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Peng Huang
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education College of Material Science and Engineering, Nanjing, 211106, China
| |
Collapse
|
2
|
Lian S, Cai Z, Yan M, Sun C, Chai N, Zhang B, Yu K, Xu M, Zhu J, Pan X, Dai Y, Huang J, Mai B, Qin L, Shi W, Xin Q, Chen X, Fu K, An Q, Yu Q, Zhou L, Luo W, Zhao K, Wang X, Mai L. Ultra-High Proportion of Grain Boundaries in Zinc Metal Anode Spontaneously Inhibiting Dendrites Growth. Angew Chem Int Ed Engl 2024; 63:e202406292. [PMID: 38780997 DOI: 10.1002/anie.202406292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Aqueous Zn-ion batteries are an attractive electrochemical energy storage solution for their budget and safe properties. However, dendrites and uncontrolled side reactions in anodes detract the cycle life and energy density of the batteries. Grain boundaries in metals are generally considered as the source of the above problems but we present a diverse result. This study introduces an ultra-high proportion of grain boundaries on zinc electrodes through femtosecond laser bombardment to enhance stability of zinc metal/electrolyte interface. The ultra-high proportion of grain boundaries promotes the homogenization of zinc growth potential, to achieve uniform nucleation and growth, thereby suppressing dendrite formation. Additionally, the abundant active sites mitigate the side reactions during the electrochemical process. Consequently, the 15 μm Fs-Zn||MnO2 pouch cell achieves an energy density of 249.4 Wh kg-1 and operates for over 60 cycles at a depth-of-discharge of 23 %. The recognition of the favorable influence exerted by UP-GBs paves a new way for other metal batteries.
Collapse
Affiliation(s)
- Sitian Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhijun Cai
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Mengyu Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Congli Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Nianyao Chai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bomian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ming Xu
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuhang Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiazhao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Bo Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ling Qin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenchao Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiqi Xin
- Minhang Hospital, Shanghai Medical College of Fudan University, Shanghai, 201199, P. R. China
| | - Xiangyu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kai Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiang Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kangning Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Physical Sciences, Great Bay University, Dongguan, 523808, P. R. China
| | - Xuewen Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
3
|
Chen X, Zhai Z, Yu T, Liang X, Huang R, Wang F, Yin S. Constructing a 3D Zinc Anode Exposing the Zn(002) Plane for Ultralong Life Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401386. [PMID: 38659174 DOI: 10.1002/smll.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Indexed: 04/26/2024]
Abstract
The limited lifespan of aqueous Zn-ion batteries (ZIBs) is primarily attributed to the irreversible issues associated with the Zn anode, including dendrite growth, hydrogen evolution, and side reactions. Herein, a 3D Zn anode exposing Zn(002) crystal planes (3D-Zn(002) anode) is first constructed by an electrostripping method in KNO3 solution. Experiments and theoretical calculations indicate that the priority adsorption of KNO3 on Zn(100) and Zn(101) planes decreases the dissolution energy of Zn atoms, thereby exposing more Zn(002) planes. The 3D-Zn(002) anode effectively regulates ion flux to realize the uniform nucleation of Zn2+. Moreover, it can inhibit water-induced formation of side-products and hydrogen evolution reaction. Consequently, the 3D-Zn(002) symmetrical cell exhibits an exceptionally long lifespan surpassing 6000 h at 5.0 mA cm-2 with a capacity of 1.0 mAh cm-2, and enduring 8500 cycles at 30 mA cm-2 with a capacity of 1.0 mAh cm-2. Besides, when NH4V4O10 is used as the cathode, the 3D-Zn(002)//NH4V4O10 full cell shows stable cycling performance with a capacity retention rate of 75.7% after 4000 cycles at 5.0 A g-1. This study proposes a feasible method employing a 3D-Zn(002) anode for enhancing the cycling durability of ZIBs.
Collapse
Affiliation(s)
- Xingfa Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Zhixiang Zhai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Tianqi Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Xincheng Liang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Renshu Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Fan Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Shibin Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
4
|
Guo D, Li Z, Zhang B, Sun H. Construction of an n-Type Fluorinated ZnO Interfacial Phase for a Stable Anode of Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042818 DOI: 10.1021/acsami.4c06463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aqueous rechargeable zinc-ion batteries have become an ideal solution for the next generation of energy storage systems due to their low cost and high safety. However, the uncontrollable zinc dendrites and harmful side reactions of metal zinc anodes hinder the further development of aqueous zinc-ion batteries. In this work, the artificial fluoride zinc oxide (F-ZnO) interface phase is integrated in situ on the surface of zinc foil. The F-ZnO interface phase significantly inhibits the side reactions on the surface of the zinc electrode by reducing the direct contact between the electrolyte and the surface of the zinc foil. In addition, F-ZnO modified by a small amount of F doping shows enhanced conductivity and electron transport capacity, avoiding the accumulation of high concentration Zn2+ on the anode surface, and ultimately promoting the efficient nucleation and orderly deposition of a zinc anode. The cycle life of the symmetrical cell based on F-ZnO is as high as 2600 cycles at an area current density of 4 mA cm-2, which is much better than that of a commercial pure Zn electrode. The modified F-ZnO@Zn anode truly achieves the purpose of prolonging the anode's life.
Collapse
Affiliation(s)
- Dongfang Guo
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - Zijiong Li
- School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bin Zhang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - Haibin Sun
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
5
|
Peng Z, Yan H, Zhang Q, Liu S, Jun SC, Poznyak S, Guo N, Li Y, Tian H, Dai L, Wang L, He Z. Stabilizing Zinc Anode through Ion Selection Sieving for Aqueous Zn-Ion Batteries. NANO LETTERS 2024. [PMID: 39037888 DOI: 10.1021/acs.nanolett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Uncontrollable dendrite growth and corrosion induced by reactive water molecules and sulfate ions (SO42-) seriously hindered the practical application of aqueous zinc ion batteries (AZIBs). Here we construct artificial solid electrolyte interfaces (SEIs) realized by sodium and calcium bentonite with a layered structure anchored to anodes (NB@Zn and CB@Zn). This artificial SEI layer functioning as a protective coating to isolate activated water molecules, provides high-speed transport channels for Zn2+, and serves as an ionic sieve to repel negatively charged anions while attracting positively charged cations. The theoretical results show that the bentonite electrodes exhibit a higher binding energy for Zn2+. This demonstrates that the bentonite protective layer enhances the Zn-ion deposition kinetics. Consequently, the NB@Zn//MnO2 and CB@Zn//MnO2 full-battery capacities are 96.7 and 70.4 mAh g-1 at 2.0 A g-1 after 1000 cycles, respectively. This study aims to stabilize Zn anodes and improve the electrochemical performance of AZIBs by ion-selection sieving.
Collapse
Affiliation(s)
- Zhi Peng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Hui Yan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China
| | - Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Shude Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Sergey Poznyak
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Na Guo
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Yuehua Li
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Huajun Tian
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| |
Collapse
|
6
|
Xu J, Han P, Jin Y, Lu H, Sun B, Gao B, He T, Xu X, Pinna N, Wang G. Hybrid Molecular Sieve-Based Interfacial Layer with Physical Confinement and Desolvation Effect for Dendrite-free Zinc Metal Anodes. ACS NANO 2024; 18:18592-18603. [PMID: 38949082 DOI: 10.1021/acsnano.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The side reactions and dendrite growth at the interface of Zn anodes greatly limit their practical applications in Zn metal batteries. Herein, we propose a hybrid molecular sieve-based interfacial layer (denoted as Z7M3) with a hierarchical porous structure for Zn metal anodes, which contains 70 vol % microporous ZSM-5 molecular sieves and 30 vol % mesoporous MCM-41 molecular sieves. Through comprehensive molecular dynamics simulations, we demonstrate that the mesopores (∼2.5 nm) of MCM-41 can limit the disordered diffusion of free water molecules and increase the wettability of the interfacial layer toward aqueous electrolytes. In addition, the micropores (∼0.56 nm) of ZSM-5 can optimize the Zn2+ solvation structures by reducing the bonded water molecules, which simultaneously decrease the constraint force of solvated water molecules to Zn2+ ions, thus promoting the penetrability and diffusion kinetics of Zn2+ ions in Z7M3. The synergetic effects from the hybrid molecular sieves maintain a constant Zn2+ concentration on the surface of the Zn electrode during Zn deposition, contributing to dendrite-free Zn anodes. Consequently, Z7M3-coated Zn electrodes achieved excellent cycling stability in both half and full cells.
Collapse
Affiliation(s)
- Jing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pingan Han
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongfei Lu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Beibei Gao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting He
- School of Electrical Engineering, Beijing Jiaotong University, No. 3 Shangyuan Cun, Haidian District, Beijing 100044, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nicola Pinna
- Department of Chemistry and the Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin 12489, Germany
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
7
|
Lu H, Hua W, Zhang Z, An X, Feng J, Xi B, Xiong S. Self-Zincophilic Dual Protection Host of 3D ZnO/Zn⊂CF to Enhance Zn Anode Cyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312187. [PMID: 38501874 DOI: 10.1002/smll.202312187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Indexed: 03/20/2024]
Abstract
Zn dendrite growth and side reactions restrict the practical use of Zn anode. Herein, the design of a novel 3D hierarchical structure is demonstrated with self-zincophilic dual-protection constructed by ZnO and Zn nanoparticles immobilized on carbon fibers (ZnO/Zn⊂CF) as a versatile host on the Zn surface. The unique 3D frameworks with abundant zinc nucleation storage sites can alleviate the structural stress during the plating/stripping process and overpower Zn dendrite growth by moderating Zn2+ flux. Moreover, given the dual protection design, it can reduce the contact area between active zinc and electrolyte, inhibiting hydrogen evolution reactions. Importantly, density functional theory calculations and experimental results confirm that the introduced O atoms in ZnO/Zn⊂CF enhance the interaction between Zn2+ and the host and reduce Zn nucleation overpotential. As expected, the ZnO/Zn⊂CF-Zn electrode exhibits stable Zn plating/stripping with low polarization for 4200 h at 0.2 mA cm-2 and 0.2 mAh cm-2. Furthermore, the symmetrical cell displays a significantly long cycling life of over 1800 h, even at 30 mA cm-2. The fabricated full cells also show impressive cycling performance when coupled with V2O3 cathodes.
Collapse
Affiliation(s)
- Huibing Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Weimin Hua
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Liu J, Luo Q, Xia S, Yang X, Lei J, Sun Q, Chen X, Shao J, Tang X, Zhou G. A Cu-Ag double-layer coating strategy for stable and reversible Zn metal anodes. J Colloid Interface Sci 2024; 665:163-171. [PMID: 38520933 DOI: 10.1016/j.jcis.2024.03.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Structuring a stable artificial coating to mitigate dendrite growth and side reactions is an effective strategy for protecting the Zn metal anode. Herein, a Cu-Ag double-layer metal coating is constructed on the Zn anode (Zn@Cu-Ag) by simple and in-situ displacement reactions. The Cu layer enhances the bond between the Ag layer and Zn substrate by acting as an intermediary, preventing the Ag coating from detachment. Concurrently, the Ag layer serves to improve the corrosion resistance of Cu metal. During plating, the initial Cu sheets and Ag particles on the surface of Zn@Cu-Ag electrode gradually transform into a flat and smooth layer, resulting in the formation of AgZn, AgZn3, and (Ag, Cu)Zn4 alloys. Alloys play a multifunctional role in inhibiting dendrite growth and side reactions due to decreased resistance, low nucleation barrier, enhanced zincophilicity, and strong corrosion resistance. Consequently, the Zn@Cu-Ag symmetric cell exhibits continuous stable performance for 3750 h at 1 mA cm-2. Furthermore, the Zn@Cu-Ag||Zn3V3O8 full cell achieves an initial capacity of 293.4 mAh g-1 and realizes long cycling stability over 1200 cycles. This work provides new insight into the engineering of an efficient artificial interface for highly stable and reversible Zn metal anodes.
Collapse
Affiliation(s)
- Junnan Liu
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Qiuyang Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Shu Xia
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Xingfu Yang
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Jie Lei
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Qi Sun
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaohu Chen
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Jiaojing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoning Tang
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China.
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Pan Y, Zuo Z, Jiao Y, Wu P. Constructing Lysozyme Protective Layer via Conformational Transition for Aqueous Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314144. [PMID: 38715517 DOI: 10.1002/adma.202314144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The practical applications for aqueous Zn ion batteries (ZIBs) are promising yet still impeded by the severe side reactions on Zn metal. Here, a lysozyme protective layer (LPL) is prepared on Zn metal surface by a simple and facile self-adsorption strategy. The LPL exhibits extremely strong adhesion on Zn metal to provide stable interface during long-term cycling. In addition, the self-adsorption strategy triggered by the hydrophobicity-induced aggregation effect endows the protective layer with a gap-free and compacted morphology which can reject free water for effective side reaction inhibition performance. More importantly, the lysozyme conformation is transformed from α-helix to β-sheet structure before layer formation, thus abundant functional groups are exposed to interact with Zn2+ for electrical double layer (EDL) modification, desolvation energy decrease, and ion diffusion kinetics acceleration. Consequently, the LPL renders the symmetrical Zn battery with ultra-long cycling performance for more than 1200 h under high Zn depth of discharge (DOD) for 77.7%, and the Zn/Zn0.25V2O5 pouch cell with low N/P ratio of 2.1 at high Zn utilization of 48% for over 300 cycles. This study proposes a facile and low-cost method for constructing a stable protective layer of Zn metal for high Zn utilization aqueous devices.
Collapse
Affiliation(s)
- Yifan Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Guo C, Huang X, Huang J, Tian X, Chen Y, Feng W, Zhou J, Li Q, Chen Y, Li SL, Lan YQ. Zigzag Hopping Site Embedded Covalent Organic Frameworks Coating for Zn Anode. Angew Chem Int Ed Engl 2024; 63:e202403918. [PMID: 38519423 DOI: 10.1002/anie.202403918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Xin Huang
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Jianlin Huang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Xi Tian
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Yuting Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Wenhai Feng
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jie Zhou
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Qi Li
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
11
|
Zhang Q, Zhi P, Zhang J, Duan S, Yao X, Liu S, Sun Z, Jun SC, Zhao N, Dai L, Wang L, Wu X, He Z, Zhang Q. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313152. [PMID: 38491731 DOI: 10.1002/adma.202313152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Peng Zhi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ningning Zhao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
12
|
Chen R, Zhang W, Guan C, Zhou Y, Gilmore I, Tang H, Zhang Z, Dong H, Dai Y, Du Z, Gao X, Zong W, Xu Y, Jiang P, Liu J, Zhao F, Li J, Wang X, He G. Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode under Harsh Conditions. Angew Chem Int Ed Engl 2024; 63:e202401987. [PMID: 38526053 PMCID: PMC11497294 DOI: 10.1002/anie.202401987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)2-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)6.xH2O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO4 2- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm-2~30 mAh cm-2). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.
Collapse
Affiliation(s)
- Ruwei Chen
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Wei Zhang
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint InstituteShanghai Jiao Tong UniversityShanghai200240China
| | - Yundong Zhou
- National Physical LaboratoryHampton RoadTeddingtonTW11 0LWUK
| | - Ian Gilmore
- National Physical LaboratoryHampton RoadTeddingtonTW11 0LWUK
| | - Hao Tang
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhenyu Zhang
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Haobo Dong
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Yuhang Dai
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Zijuan Du
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Xuan Gao
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Wei Zong
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Yewei Xu
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Peie Jiang
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Jiyang Liu
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Fangjia Zhao
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Jianwei Li
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Guanjie He
- Department of ChemistryUniversity College LondonLondonWC1E 7JEUK
| |
Collapse
|
13
|
Tao Z, He X, Yu L, Ma X, Ahmad N, Zhang G. Regulating "Tip Effect" and Zn 2+-Deposition Kinetics by In Situ Constructing Interphase for Low Voltage Hysteresis and Dendrite-Free Zn Anode. SMALL METHODS 2024:e2400463. [PMID: 38757540 DOI: 10.1002/smtd.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 05/18/2024]
Abstract
Metal zinc (Zn) is being explored as a possible anode for aqueous zinc ion batteries (AZIBs). However, unrestrained Zn dendrite caused by "tip effect" and chemical corrosion continue to plague the Zn deposition process, limiting the functionality of AZIBs and prohibiting their use at high current densities. This work presents an in situ approach for introducing homogeneous ZnO nanoarrays onto the surface of Zn foil (Zn@ZnO NAs) as a functional protective interphase. On the one hand, well-distributed ZnO NAs protection layer can regulate the "tip effect" and confine the growth of Zn dendrite. On the other hand, the ZnO NAs layer can enhance the desolvation and diffusion process of Zn2+ on the surface of anode, attributing to low voltage hysteresis and exceptional electrochemical performance at high current densities. As a result, the Zn@ZnO NAs exhibits a low voltage hysteresis of 50.8 mV with a superb lifespan of 1200 h at a current density of 5 mA cm-2. Moreover, Zn@ZnO NAs||α-MnO2 full-cell shows a superior cycling performance after 500 cycles at 0.5 A g-1 with a capacity of 216.69 mAh g-1. This work is expected to provide ideas for designing other reversible zinc anode chemical systems, especially under a high current density.
Collapse
Affiliation(s)
- Zongzhi Tao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoyue He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lai Yu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyi Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Nazir Ahmad
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
14
|
Liu Z, Zhang X, Liu Z, Jiang Y, Wu D, Huang Y, Hu Z. Rescuing zinc anode-electrolyte interface: mechanisms, theoretical simulations and in situ characterizations. Chem Sci 2024; 15:7010-7033. [PMID: 38756795 PMCID: PMC11095385 DOI: 10.1039/d4sc00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
Collapse
Affiliation(s)
- Zhenjie Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Zhang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| | - Yue Jiang
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust Nansha Guangzhou 511400 Guangdong P. R. China
| | - Dianlun Wu
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust Nansha Guangzhou 511400 Guangdong P. R. China
| | - Yang Huang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust Nansha Guangzhou 511400 Guangdong P. R. China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
15
|
Zhu K, Luo J, Zhang D, Wang N, Pan S, Zhou S, Zhang Z, Guo G, Yang P, Fan Y, Hou S, Shao Z, Liu S, Lin L, Xue P, Hong G, Yang Y, Yao Y. Molecular Engineering Enables Hydrogel Electrolyte with Ionic Hopping Migration and Self-Healability toward Dendrite-Free Zinc-Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311082. [PMID: 38288858 DOI: 10.1002/adma.202311082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Hydrogel electrolytes (HEs), characterized by intrinsic safety, mechanical stability, and biocompatibility, can promote the development of flexible aqueous zinc-ion batteries (FAZIBs). However, current FAZIB technology is severely restricted by the uncontrollable dendrite growth arising from undesirable reactions between the HEs with sluggish ionic conductivity and Zn metal. To overcome this challenge, this work proposes a molecular engineering strategy, which involves the introduction of oxygen-rich poly(urea-urethane) (OR-PUU) into polyacrylamide (PAM)-based HEs. The OR-PUU/PAM HEs facilitate rapid ion transfer through their ionic hopping migration mechanism, resulting in uniform and orderly Zn2+ deposition. The abundant polar groups on the OR-PUU molecules in OR-PUU/PAM HEs break the inherent H-bond network, tune the solvation structure of hydrated Zn2+, and inhibit the occurrence of side reactions. Moreover, the interaction of hierarchical H-bonds in the OR-PUU/PAM HEs endows them with self-healability, enabling in situ repair of cracks induced by plating/stripping. Consequently, Zn symmetric cells incorporating the novel OR-PUU/PAM HEs exhibit a long cycling life of 2000 h. The resulting Zn-MnO2 battery displays a low capacity decay rate of 0.009% over 2000 cycles at 2000 mA g-1. Overall, this work provides valuable insights to facilitate the realization of dendrite-free Zn-metal anodes through the molecular engineering of HEs.
Collapse
Affiliation(s)
- Kaiping Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dehe Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Nanyang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shibo Pan
- Faculty of Physics, Central South University, Changsha, 410083, P. R. China
| | - Shujin Zhou
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhenjie Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Gengde Guo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Peng Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuan Fan
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shisheng Hou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhipeng Shao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shizhuo Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR 999077, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
16
|
Wei M, Duan F, Li B, Wang Y, Wu L. In Situ Grown Coordination-Supramolecular Layer Holding 3D Charged Channels for Highly Reversible Zn Anodes. NANO LETTERS 2024; 24:4124-4131. [PMID: 38483552 DOI: 10.1021/acs.nanolett.3c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Dynamic reversible noncovalent interactions make supramolecular framework (SF) structures flexible and designable. A three-dimensional (3D) growth of such frameworks is beneficial to improve the structure stability while maintaining unique properties. Here, through the ionic interaction of the polyoxometalate cluster, coordination of zinc ions with cationic terpyridine, and hydrogen bonding of grafted carboxyl groups, the construction of a 3D SF at a well-crystallized state is realized. The framework can grow in situ on the Zn surface, further extending laterally into a full covering without defects. Relying on the dissolution and the postcoordination effects, the 3D SF layer is used as an artificial solid electrolyte interphase to improve the Zn-anode performance. The uniformly distributed clusters within nanosized pores create a negatively charged nanochannel, accelerating zinc ion transfer and homogenizing zinc deposition. The 3D SF/Zn symmetric cells demonstrate high stability for over 3000 h at a current density of 5 mA cm-2.
Collapse
Affiliation(s)
- Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Fengxue Duan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
17
|
Yang X, Li X, Liu M, Yang S, Xu Q, Zeng G. Confined Synthesis of Dual-Atoms Within Pores of Covalent Organic Frameworks for Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306295. [PMID: 37992255 DOI: 10.1002/smll.202306295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Dual-atom catalysts exhibit higher reactivity and selectivity than the single-atom catalysts. The pyrolysis of bimetal salt precursors is the most typical method for synthesizing dual-atomic catalysts; however, the finiteness of bimetal salts limits the variety of dual-atomic catalysts. In this study, a confined synthesis strategy for synthesizing dual-atomic catalysts is developed. Owing to the in situ synthesis of zeolitic imidazolate frameworks in the pores of covalent organic frameworks (COFs), the migration and aggregation of metal atoms are suppressed adequately during the pyrolysis process. The resultant catalyst contains abundant Zn─Co dual atomic sites with 2.8 wt.% Zn and 0.5 wt.% Co. The catalyst exhibits high reactivity toward oxygen reduction reaction with a half-wave potential of 0.86 V, which is superior to that of the commercial Pt/C catalyst. Theoretical calculations reveal that the Zn atoms in the Zn─Co dual atomic sites promote the formation of intermediate OOH*, and thus contribute to high catalytic performance. This study provides new insights into the design of dual-atom catalysts using COFs.
Collapse
Affiliation(s)
- Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
19
|
Niu Y, Chang L, Sun Q, Liu Y, Nie W, Duan T, Lu X, Cheng H. Manipulating Zn Metal Texture with Guided Zincophilic Sites via Electrochemical Stripping for Dendrite-Free Zn Anodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6988-6997. [PMID: 38310560 DOI: 10.1021/acsami.3c14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Constructing a three-dimensional (3D) structure along with Zn (002) texture selective exposure is a promising strategy to tackle the issues faced by Zn metal anodes. Herein, for the first time, we proposed an electrochemical stripping strategy to achieve controlled modification of the texture and microstructure of zinc foils in one step, building a hierarchical structure with (002) texture preferred exposed Zn (SZ). The SZ with favorable zincophilic properties not only can reduce the concentration polarization at the interface but also allow Zn to grow horizontally on the edge of the (002) texture by guiding the adsorption sites for Zn2+. Moreover, the honeycomb-like structure is beneficial to rearrange the distribution of the Zn2+ flux as well as alleviating stress changes during cycling. Thus, the SZ||Cu cell exhibits excellent stability with a Coulombic efficiency of 99.76% over 1800 cycles. The SZ||NaV3O8·xH2O cell with inconspicuous self-discharge effect maintains a high areal capacity of 3.67 mA h cm-2 even after 700 cycles with a low N/P ratio of 3.6. This work achieves texture architecture and structure designing on Zn foils simultaneously by metallurgical electrochemical methods and opens up a potential strategy to implement the practicality of zinc metal anodes.
Collapse
Affiliation(s)
- Yunjiao Niu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Linhui Chang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Qiangchao Sun
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yanbo Liu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Nie
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Tong Duan
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hongwei Cheng
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
20
|
Ge W, Peng H, Dong J, Wang G, Cui L, Sun W, Ma X, Yang J. Zn(002)-preferred and pH-buffering triethanolamine as electrolyte additive for dendrite-free Zn anodes. Chem Commun (Camb) 2024; 60:750-753. [PMID: 38116817 DOI: 10.1039/d3cc05307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Zn anodes of aqueous batteries face severe challenges from side reactions and dendrite growth. Here, triethanolamine (TEOA) is developed as an electrolyte additive to address these challenges. It enhances the exposure of Zn(002) and diminishes the change in pH. Therefore, the electrolyte containing TEOA shows improved electrochemical performance.
Collapse
Affiliation(s)
- Wenjing Ge
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huili Peng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Dong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Gulian Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Lifeng Cui
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou 253024, P. R. China
| | - Wei Sun
- Shandong Hualu-Hengsheng Chemical Co. Ltd, Dezhou 253024, P. R. China
| | - Xiaojian Ma
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
21
|
Li L, Yang H, Peng H, Lei Z, Xu Y. Covalent Organic Frameworks in Aqueous Zinc-Ion Batteries. Chemistry 2023; 29:e202302502. [PMID: 37621027 DOI: 10.1002/chem.202302502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
The development and utilization of green renewable energy are imperative with the aggravation of environmental pollution and energy crisis. In recent years, the exploration of electrochemical energy storage systems has gradually become a research hotspot in energy. Among them, aqueous zinc-ion batteries (ZIBs) have progressively developed into highly competitive and efficient energy storage devices owing to their inherent safety, natural abundance, and higher theoretical capacity. However, the practical application of ZIBs suffers from the limitation of challenges such as the absence of proper cathode materials and the unavoidable zinc dendrites and side reactions of Zn anode. Covalent organic frameworks (COFs) are an attractive class of electrode materials due to their inherent advantages, like structural designability, high stability, and ordered-open channels, bestowing them with great potential to overcome the problems of ZIBs. In this review, we concentrate on the discussion of designed strategies of COFs applied to ZIBs. Furthermore, the methods of using COFs to solve the challenging problems of cathode development, anode modification, and electrolyte optimization for ZIBs are summarized. Finally, the existing difficulties, solution measures, and prospects of COFs for ZIBs applications are discussed. Our commentary hopes to serve as a valuable reference for developing COFs-based ZIBs.
Collapse
Affiliation(s)
- Lihua Li
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Haohao Yang
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Hui Peng
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Yuxi Xu
- Institute of Advanced Technology, Westlake Institute for Advanced Study, School of Engineering, Westlake University, 310024, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
22
|
Zeng Y, Pei Z, Guo Y, Luan D, Gu X, Lou XWD. Zincophilic Interfacial Manipulation against Dendrite Growth and Side Reactions for Stable Zn Metal Anodes. Angew Chem Int Ed Engl 2023; 62:e202312145. [PMID: 37728430 DOI: 10.1002/anie.202312145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Constructing multifunctional interphases to suppress the rampant Zn dendrite growth and detrimental side reactions is crucial for Zn anodes. Herein, a phytic acid (PA)-ZnAl coordination compound is demonstrated as a versatile interphase layer to stabilize Zn anodes. The zincophilic PA-ZnAl layer can manipulate Zn2+ flux and promote rapid desolvation kinetics, ensuring the uniform Zn deposition with dendrite-free morphology. Moreover, the robust PA-ZnAl protective layer can effectively inhibit the hydrogen evolution reaction and formation of byproducts, further contributing to the reversible Zn plating/stripping with high Coulombic efficiency. As a result, the Zn@PA-ZnAl electrode shows a lower Zn nucleation overpotential and higher Zn2+ transference number compared with bare Zn. The Zn@PA-ZnAl symmetric cell exhibits a prolonged lifespan of 650 h tested at 5 mA cm-2 and 5 mAh cm-2 . Furthermore, the assembled Zn battery full cell based on this Zn@PA-ZnAl anode also delivers decent cycling stability even under harsh conditions.
Collapse
Affiliation(s)
- Yinxiang Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Zhihao Pei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
23
|
Feng D, Jiao Y, Wu P. Guiding Zn Uniform Deposition with Polymer Additives for Long-lasting and Highly Utilized Zn Metal Anodes. Angew Chem Int Ed Engl 2023:e202314456. [PMID: 37929923 DOI: 10.1002/anie.202314456] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
The parasitic side reaction on Zn anode is the key issue which hinders the development of aqueous Zn-based energy storage systems on power-grid applications. Here, a polymer additive (PMCNA) engineered by copolymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-acryloyl glycinamide (NAGA) was employed to regulate the Zn deposition environment for satisfying side reaction inhibition performance during long-term cycling with high Zn utilization. The PMCNA can preferentially adsorb on Zn metal surface to form a uniform protective layer for effective water molecule repelling and side reaction resistance. In addition, the PMCNA can guide Zn nucleation and deposition along 002 plane for further side reaction and dendrite suppression. Consequently, the PMCNA additive can enable the Zn//Zn battery with an ultrahigh depth of discharge (DOD) of 90.0 % for over 420 h, the Zn//active carbon (AC) capacitor with long cycling lifespan, and the Zn//PANI battery with Zn utilization of 51.3 % at low N/P ratio of 2.6.
Collapse
Affiliation(s)
- Doudou Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
24
|
Meng Y, Wang M, Xu J, Xu K, Zhang K, Xie Z, Zhu Z, Wang W, Gao P, Li X, Chen W. Balancing Interfacial Reactions through Regulating p-Band Centers by an Indium Tin Oxide Protective Layer for Stable Zn Metal Anodes. Angew Chem Int Ed Engl 2023; 62:e202308454. [PMID: 37563746 DOI: 10.1002/anie.202308454] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Metallic zinc (Zn) is considered as one of the most attractive anode materials for the post-lithium metal battery systems owing to the high theoretical capacity, low cost, and intrinsic safety. However, the Zn dendrites and parasitic side reaction impede its application. Herein, we propose a new principle of regulating p-band center of metal oxide protective coating to balance Zn adsorption energy and migration energy barrier for effective Zn deposition and stripping. Experimental results and theoretical calculations indicate that benefiting from the uniform zincophilic nucleation sites and fast Zn transport on indium tin oxide (ITO), highly stable and reversible Zn anode can be achieved. As a result, the I-Zn symmetrical cell achieves highly reversible Zn deposition/stripping with an extremely low overpotential of 9 mV and a superior lifespan over 4000 h. The Cu/I-Zn asymmetrical cell exhibits a long lifetime of over 4000 cycles with high average coulombic efficiency of 99.9 %. Furthermore, the assembled I-Zn/AC full cell exhibits an excellent lifetime for 70000 cycles with nearly 100 % capacity retention. This work provides a general strategy and new insight for the construction of efficient Zn anode protection layer.
Collapse
Affiliation(s)
- Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kui Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Gao
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu 214443, China
| | - Xiangyang Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
Xu D, Ren X, Xu Y, Wang Y, Zhang S, Chen B, Chang Z, Pan A, Zhou H. Highly Stable Aqueous Zinc Metal Batteries Enabled by an Ultrathin Crack-Free Hydrophobic Layer with Rigid Sub-Nanochannels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303773. [PMID: 37515370 PMCID: PMC10520658 DOI: 10.1002/advs.202303773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Indexed: 07/30/2023]
Abstract
Aqueous zinc-metal batteries (AZMBs) have received tremendous attentions due to their high safety, low cost, environmental friendliness, and simple process. However, zinc-metal still suffer from uncontrollable dendrite growth and surface parasitic reactions that reduce the Coulombic efficiency (CE) and lifetime of AZMBs. These problems which are closely related to the active water are not well-solved. Here, an ultrathin crack-free metal-organic framework (ZIF-7x -8) with rigid sub-nanopore (0.3 nm) is constructed on Zn-metal to promote the de-solvation of zinc-ions before approaching Zn-metal surface, reduce the contacting opportunity between water and Zn, and consequently eliminate water-induced corrosion and side-reactions. Due to the presence of rigid and ordered sub-nanochannels, Zn-ions deposits on Zn-metal follow a highly ordered manner, resulting in a dendrite-free Zn-metal with negligible by-products, which significantly improve the reversibility and lifespan of Zn-metals. As a result, Zn-metal protected by ultrathin crack-free ZIF-7x -8 layer exhibits excellent cycling stability (over 2200 h) and extremely-high 99.96% CE during 6000 cycles. The aqueous PANI-V2 O5 //ZIF-7x -8@Zn full-cell preserves 86% high-capacity retention even after ultra-long 2000 cycles. The practical pouch-cell can also be cycled for more than 120 cycles. It is believed that the simple strategy demonstrated in this work can accelerate the practical utilizations of AZMBs.
Collapse
Affiliation(s)
- Dongming Xu
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Xueting Ren
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Yan Xu
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Yijiang Wang
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Shibin Zhang
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Benqiang Chen
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Zhi Chang
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Anqiang Pan
- School of Materials Science and EngineeringKey Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan ProvinceCentral South UniversityChangshaHunan410083P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials and TechnologyCollege of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNational Laboratory of Solid State Micro‐structuresand Collaborative Innovation Center of Advanced Micro‐structuresNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
26
|
Liu P, Guo J, Gao S, Zeng P, Zhang Q, Wang T, Wu D, Liu K. Interface engineering strategy construction of covalent organic framework for promoting highly reversible zinc metal. J Colloid Interface Sci 2023; 648:520-526. [PMID: 37307608 DOI: 10.1016/j.jcis.2023.05.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/21/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Zn-ion energy storage devices will play important roles in the future energy storage field. However, Zn-ion device development suffers significantly from adverse chemical reactions (dendrite formation, corrosion, and deformation) on the Zn anode surface. Zn dendrite formation, hydrogen evolution corrosion, and deformation combine to degrade Zn-ion devices. Zincophile modulation and protection using covalent organic frameworks (COF) inhibited dendritic growth by induced uniform Zn ion deposition, which also prevented chemical corrosion. The Zn@COF anode circulated stably for more than 1800 cycles even at high current density in symmetric cells and maintained a low and stable voltage hysteresis. This work explains the surface state of the Zn anode and provides information for further research.
Collapse
Affiliation(s)
- Penggao Liu
- State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China; Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jia Guo
- State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Shasha Gao
- Key Laboratory of Microelectronics and Energy of Henan Province, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE(2)), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zeng
- State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Qu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Kaiyu Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|