1
|
Zhu KL, Li ZA, Liang J, Zou KL, Shen YJ, Gong HY. The Effects of Pore Defects in π-Extended Pentadecabenzo[9]helicene. Angew Chem Int Ed Engl 2024; 63:e202409713. [PMID: 39031452 DOI: 10.1002/anie.202409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecules, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41×10-2 in solution and BCPL as 254 M-1 cm-1. In PMMA film, |glum| of 1 is 8.56×10-3, and in powder film, it is 5.00×10-3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.
Collapse
Affiliation(s)
- Ke-Lin Zhu
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Zhi-Ao Li
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Jiaqi Liang
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Kang-Li Zou
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| |
Collapse
|
2
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Fan Q, Ruan Z, Werner S, Naumann T, Bolat R, Martinez-Castro J, Koehler T, Vollgraff T, Hieringer W, Mandalia R, Neiß C, Görling A, Tautz FS, Sundermeyer J, Gottfried JM. Bottom-up Synthesis and Characterization of Porous 12-Atom-Wide Armchair Graphene Nanoribbons. NANO LETTERS 2024; 24:10718-10723. [PMID: 39185821 DOI: 10.1021/acs.nanolett.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Although several porous carbon/graphene nanoribbons (GNRs) have been prepared, a direct comparison of the electronic properties between a nonporous GNR and its periodically perforated counterpart is still missing. Here, we report the synthesis of porous 12-atom-wide armchair-edged GNRs from a bromoarene precursor on a Au(111) surface via hierarchical Ullmann and dehydrogenative coupling. The selective formation of porous 12-GNRs was achieved through thermodynamic and kinetic reaction control combined with tailored precursor design. The structure and electronic properties of the porous 12-GNR were elucidated by scanning tunneling microscopy/spectroscopy and density functional theory calculations, revealing that the pores induce a 2.17 eV band gap increase compared to the nonporous 12-AGNR on the same surface.
Collapse
Affiliation(s)
- Qitang Fan
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
- Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zilin Ruan
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Simon Werner
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Tim Naumann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Rustem Bolat
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Experimentalphysik II B, RWTH Aachen, 52074 Aachen, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Institut für Experimentalphysik IV A, RWTH Aachen, 52074 Aachen, Germany
| | - Jose Martinez-Castro
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Experimentalphysik II B, RWTH Aachen, 52074 Aachen, Germany
| | - Tabea Koehler
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Tobias Vollgraff
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Wolfgang Hieringer
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Raviraj Mandalia
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Christian Neiß
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - F Stefan Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Institut für Experimentalphysik IV A, RWTH Aachen, 52074 Aachen, Germany
| | - Jörg Sundermeyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - J Michael Gottfried
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
4
|
Sarker M, Dobner C, Zahl P, Fiankor C, Zhang J, Saxena A, Aluru N, Enders A, Sinitskii A. Porous Nanographenes, Graphene Nanoribbons, and Nanoporous Graphene Selectively Synthesized from the Same Molecular Precursor. J Am Chem Soc 2024; 146:14453-14467. [PMID: 38747845 DOI: 10.1021/jacs.3c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We demonstrate a family of molecular precursors based on 7,10-dibromo-triphenylenes that can selectively produce different varieties of atomically precise porous graphene nanomaterials through the use of different synthetic environments. Upon Yamamoto polymerization of these molecules in solution, the free rotations of the triphenylene units around the C-C bonds result in the formation of cyclotrimers in high yields. In contrast, in on-surface polymerization of the same molecules on Au(111) these rotations are impeded, and the coupling proceeds toward the formation of long polymer chains. These chains can then be converted to porous graphene nanoribbons (pGNRs) by annealing. Correspondingly, the solution-synthesized cyclotrimers can also be deposited onto Au(111) and converted into porous nanographenes (pNGs) via thermal treatment. Thus, both processes start with the same molecular precursor and end with a porous graphene nanomaterial on Au(111), but the type of product, pNG or pGNR, depends on the specific coupling approach. We also produced extended nanoporous graphenes (NPGs) through the lateral fusion of highly aligned pGNRs on Au(111) that were grown at high coverage. The pNGs can also be synthesized directly in solution by Scholl oxidative cyclodehydrogenation of cyclotrimers. We demonstrate the generality of this approach by synthesizing two varieties of 7,10-dibromo-triphenylenes that selectively produced six nanoporous products with different dimensionalities. The basic 7,10-dibromo-triphenylene monomer is amenable to structural modifications, potentially providing access to many new porous graphene nanomaterials. We show that by constructing different porous structures from the same building blocks, it is possible to tune the energy band gap in a wide range.
Collapse
Affiliation(s)
- Mamun Sarker
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| | - Christoph Dobner
- Physikalisches Institut, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christian Fiankor
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anshul Saxena
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Narayana Aluru
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Axel Enders
- Physikalisches Institut, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
5
|
Khatun S, Samanta S, Addicoat MA, Pradhan A. Bottom-Up Synthesis of Twisted Porous Graphene through a Heterogeneous Scholl Reaction and Its Supercapacitor Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19877-19883. [PMID: 38570930 DOI: 10.1021/acsami.4c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Anthracene- and pyrene-based twisted porous graphene (AN-Pyre-PG) with an ordered pore structure has been synthesized through bottom-up solution phase synthesis from a conjugated microporous polymer (AN-Pyre-CMP) via a heterogeneous Scholl cyclization reaction. The regular-ordered pores embedded within the graphene structures were analyzed through a Raman spectrum, different morphological analyses, and theoretical studies. A significant change in surface area from AN-Pyre-CMP to AN-Pyre-PG was observed, from 143 to 640 m2/g, respectively. Surface area-driven capacitive properties were also observed. Twisted-structure and ordered porous graphene shows better specific capacitance compared to CMP. AN-Pyre-PG shows a specific capacitance of 629 F g-1 at 1 A g-1, with 91% retention of capacitance after 3000 charge-discharge cycles, whereas AN-Pyre-CMP shows a maximum specific capacitance of 200 F g-1 was observed at 2 A g-1.
Collapse
Affiliation(s)
- Sahina Khatun
- Department of Chemistry, Birla Institute of Technology (BIT) - Mesra, Ranchi, Jharkhand 835215, India
| | - Siddhartha Samanta
- Department of Chemistry, Birla Institute of Technology (BIT) - Mesra, Ranchi, Jharkhand 835215, India
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Anirban Pradhan
- Department of Chemistry, Birla Institute of Technology (BIT) - Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
6
|
Wang FF, Wang YX, Wu Q, Chai L, Chen XW, Tan YZ. Nanographene with a Nitrogen-Doped Cavity. Angew Chem Int Ed Engl 2024; 63:e202315302. [PMID: 38009464 DOI: 10.1002/anie.202315302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.
Collapse
Affiliation(s)
- Fei-Fan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Xiang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiong Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling Chai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Yao X, Zhang H, Kong F, Hinaut A, Pawlak R, Okuno M, Graf R, Horton PN, Coles SJ, Meyer E, Bogani L, Bonn M, Wang HI, Müllen K, Narita A. N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility. Angew Chem Int Ed Engl 2023; 62:e202312610. [PMID: 37750665 DOI: 10.1002/anie.202312610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives (1 and 2) as subunits of 8-AGNR, with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR. The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V-1 s-1 for the 8-AGNR.
Collapse
Affiliation(s)
- Xuelin Yao
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
- Department of Materials, University of Oxford, OX1 3PH, Oxford, United Kingdom
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Fanmiao Kong
- Department of Materials, University of Oxford, OX1 3PH, Oxford, United Kingdom
| | - Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Masanari Okuno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, 153-8902, Tokyo, Japan
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Peter N Horton
- National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Lapo Bogani
- Department of Materials, University of Oxford, OX1 3PH, Oxford, United Kingdom
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Okinawa, Japan
| |
Collapse
|