1
|
Peng Y, Yuan L, Liu KK, Guan ZJ, Jin S, Fang Y. Photosynthesis of H 2O 2 using Phenothiazine-Based Covalent-Organic Frameworks Mimicking Coenzyme Q. Angew Chem Int Ed Engl 2024:e202423055. [PMID: 39714409 DOI: 10.1002/anie.202423055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Mimicking natural enzymes through artificial enzyme engineering represents a powerful strategy to fine-tune the performance of photocatalysts, while the manipulation of electron transfer systems through atomic precision control is challenging. Herein, we reported a series of covalent organic frameworks (COFs) based on progressively oxidized phenothiazine (PTH) core as the platform for emulating Coenzyme Q, achieved through meticulous stepwise adjustments of their redox states. Compared to the original PTH-S-COF, the COFs with incrementally oxidized sulfur sites exhibited enhanced charge transfer efficiencies, facilitating efficient electron donation to O2 and thereby providing a favorable pathway for H2O2 synthesis. Notably, the PTH-SO2-COF achieved a remarkable synthesis rate of 7755 μmol g-1 h-1, marking a 720 % improvement over the PTH-S-COF baseline. Furthermore, upon adjusting the sacrificial agent ratio, this rate soared to an impressive 13565 μmol g-1 h-1, surpassing the most reported photo-active COFs. In situ characterizations and simulations verified that three H2O2 evolution pathways (2e- ORR, 4e- OER, and 4e- ORR) all involved in the H2O2 production process. As a result, our findings introduce a novel pathway for the development of high-performance COF-based photocatalysts through the innovative application of artificial enzyme-mimicking techniques.
Collapse
Affiliation(s)
- Yaoyao Peng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Lewang Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Kang-Kai Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Zong-Jie Guan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yu Fang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
2
|
Li S, Gao C, Yu H, Wang Y, Wang S, Ding W, Zhang L, Yu J. Vinylene-Linked Donor-π-Acceptor Metal-Covalent Organic Framework for Enhanced Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202409925. [PMID: 39225195 DOI: 10.1002/anie.202409925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Intramolecular charge separation driving force and linkage chemistry between building blocks are critical factors for enhancing the photocatalytic performance of metal-covalent organic framework (MCOF) based photocatalyst. However, robust achieving both simultaneously has yet to be challenging despite ongoing efforts. Here we develop a fully π-conjugated vinylene-linked multivariate donor-π-acceptor MCOF (D-π-A, termed UJN-1) by integrating benzyl cyanides linker with multiple functional building blocks of electron-rich triphenylamine and electron-deficient copper-cyclic trinuclear units (Cu-CTUs) moieties, featuring with strong intramolecular charge separation driving force, extended conjugation degree of skeleton, and abundant active sites. The incorporation of Cu-CTUs acceptor with electron-withdrawing ability and concomitantly giant charge separation driving force can efficiently accelerate the photogenerated electrons transfer from triphenylamine to Cu-CTUs, revealing by experiments and theoretical calculations. Benefiting from the synergistically effect of D-π-A configuration and vinylene linkage, the highly-efficient charge spatial separation is achieved. Consequently, UJN-1 exhibits an excellent CO formation rate of 114.8 μmol g-1 in 4 h without any co-catalysts or sacrificial reagents under visible light, outperforming those analogous MCOFs with imine-linked (UJN-2, 28.9 μmol g-1) and vinylene-linked COF without Cu-CTU active sites (UJN-3, 50.0 μmol g-1), emphasizing the role of charge separation driving force and linkage chemistry in designing novel COFs-based photocatalyst.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuwen Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Wenwen Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
3
|
Jia T, Ai J, Li X, Zhang MM, Hua Y, Li YX, Sun CF, Liu F, Huang RW, Wang Z, Zang SQ. Atomically precise copper clusters with dual sites for highly chemoselective and efficient hydroboration. Nat Commun 2024; 15:9551. [PMID: 39500907 PMCID: PMC11538399 DOI: 10.1038/s41467-024-53950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The hydroboration of alkynes into vinylboronate esters is a vital transformation, but achieving high chemoselectivity of targeted functional groups and an appreciable turnover number is a considerable challenge. Herein, we develop two dynamically regulating dual-catalytic-site copper clusters (Cu4NC and Cu8NC) bearing N-heterocyclic thione ligands that endow Cu4NC and Cu8NC catalysts with performance. In particular, the performance of microcrystalline Cu4NC in hydroboration is characterized by a high turnover number (77786), a high chemoselectivity, high recovery and reusability under mild conditions. Mechanistic studies and density functional theory calculations reveal that, compared with the Cu8NC catalyst, the Cu4NC catalyst has a lower activation energy for hydroboration, accounting for its high catalytic activity. This work reveals that precisely constructed cluster catalysts with dual catalytic sites may provide a way to substantially improve catalytic properties by fully leveraging synergistic interactions and dynamic ligand effects, thus promoting the development of cluster catalysts.
Collapse
Affiliation(s)
- Teng Jia
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Ai
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Miao-Miao Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Xin Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Cai-Fang Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., LTD, Kunming, 650106, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zheng Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Liu X, Zhu C, Li M, Xing H, Zhu S, Liu X, Zhu G. Confinement Synthesis of Atomic Copper-Anchored Polymeric Carbon Nitride in Crystalline UiO-66-NH 2 for High-Performance CO 2-to-CH 3OH Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202412408. [PMID: 39073292 DOI: 10.1002/anie.202412408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 07/30/2024]
Abstract
Photocatalytic CO2 reduction to value-added fuels displays an attractive scenario to enhance energy supply and reduce global warming. We report herein the confinement synthesis of polymeric carbon nitride (PCN) incorporating with Cu single atoms (CuSAs) inside the crystalline UiO-66-NH2, which combines the merits of heterojunction photocatalysis and single-atom catalysis (SAC) to achieve high-performance CO2-to-CH3OH conversion. A series of spectral studies displays the formation of CuSAs@PCN inside the crystalline UiO-66-NH2. Remarkably, the ternary composite shows an excellent photocatalytic turnover frequency of 4.15 mmol ⋅ h-1 ⋅ g-1 for CO2-to-CH3OH conversion. Theoretical and experimental studies demonstrate the doping of CuSAs, as well as the formation of type-II heterojunction, are causal factors to achieve CH3OH generation. The study provides new insights designing high-performance photocatalyst for CO2 conversion to fuels at atomic scale.
Collapse
Affiliation(s)
- Xingbing Liu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Changyan Zhu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Mengying Li
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Siyang Zhu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Xin Liu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| | - Guangshan Zhu
- College of Chemistry, Northeast Normal University, 130021, Changchun, China
| |
Collapse
|
5
|
Li J, Zhou J, Wang XH, Guo C, Li RH, Zhuang H, Feng W, Hua Y, Lan YQ. In situ Construction of Single-Atom Electronic Bridge on COF to Enhance Photocatalytic H 2 Production. Angew Chem Int Ed Engl 2024; 63:e202411721. [PMID: 39136169 DOI: 10.1002/anie.202411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/25/2024]
Abstract
Photocatalytic hydrogen production is one of the most valuable technologies in the future energy system. Here, we designed a metal-covalent organic frameworks (MCOFs) with both small-sized metal clusters and nitrogen-rich ligands, named COF-Cu3TG. Based on our design, small-sized metal clusters were selected to increase the density of active sites and shorten the distance of electron transport to active sites. While another building block containing nitrogen-rich organic ligands acted as a node that could in situ anchor metal atoms during photocatalysis and form interlayer single-atom electron bridges (SAEB) to accelerate electron transport. Together, they promoted photocatalytic performance. This represented the further utilization of Ru atoms and was an additional application of the photosensitizer. N2-Ru-N2 electron bridge (Ru-SAEB) was created in situ between the layers, resulting in a considerable enhancement in the hydrogen production rate of the photocatalyst to 10.47 mmol g-1 h-1. Through theoretical calculation and EXAFS, the existence position and action mechanism of Ru-SAEB were reasonably inferred, further confirming the rationality of the Ru-SAEB configuration. A sufficiently proximity between the small-sized Cu3 cluster and the Ru-SAEB was found to expedite electron transfer. This work demonstrated the synergistic impact of small molecular clusters with Ru-SAEB for efficient photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jie Zhou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Xiao-Han Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Can Guo
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Huifen Zhuang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wenhai Feng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yingjie Hua
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Gao Z, Lv S, Wang Y, Xu Z, Zong Y, Tao Y, Zhao Y, Liu X, Yu S, Luo M, Khaorapapong N, Zhang R, Yamauchi Y. Precise Regulation of Interlayer Stacking Modes in Trinuclear Copper Organic Frameworks for Efficient Photocatalytic Reduction of Uranium(VI). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406530. [PMID: 39329488 DOI: 10.1002/advs.202406530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Indexed: 09/28/2024]
Abstract
The interlayer stacking modes of 2D covalent-organic frameworks (COFs) directly influence their structural features, ultimately determining their functional output. However, controllably modulating the interlayer stacking structure in traditional 2D metal-free COFs, based on the same building blocks, remains challenging. Here, two trinuclear copper organic frameworks are synthesized successfully with different interlayer stacking structures: eclipsed AA stacking in Cu3-PA-COF-AA and staggered ABC stacking in Cu3-PA-COF-ABC, using the same monomers. Remarkably, various functionalities, including porosity and electronic and optical properties, can be effectively regulated by interlayer stacking. As a result, Cu3-PA-COF-AA and Cu3-PA-COF-ABC exhibit significantly different activities toward the photoreduction of U(VI), presenting a promising strategy for removing radioactive uranium pollution. Due to its broader visible-light absorption range and superior photogenerated carrier migration and separation efficiency, Cu3-PA-COF-AA achieves a U(VI) removal ratio of 93.6% without additional sacrificial agents in an air atmosphere-≈2.2 times higher than that of Cu3-PA-COF-ABC (42.0%). To the best of the knowledge, this is the first study to elucidate the effect of interlayer stacking in COFs on the photocatalytic activity of U(VI) reduction. This finding may inspire further exploration of the structure-function relationship in COFs as photocatalysts and their potential for photoinduced removal of radionuclides.
Collapse
Affiliation(s)
- Zhi Gao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Sijia Lv
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Yue Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Zhenzhen Xu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Yingtong Zong
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Xingyu Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Shuhui Yu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Mingbiao Luo
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ruikang Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
7
|
Wu D, Zhang Q, Yin S, Song C, Gu N, Wang D, Cai T, Zhang B. Room-Temperature Single-Phase Synthesis of Semiconducting Metal-Covalent Organic Frameworks With Microenvironment-Tuned Photocatalytic Efficiency. SMALL METHODS 2024:e2401284. [PMID: 39394717 DOI: 10.1002/smtd.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Indexed: 10/14/2024]
Abstract
In order to improve the solubility of metallated monomers and product crystallinity, metal-covalent organic frameworks (MCOFs) are commonly prepared via high-temperature sol-vothermal synthesis. However, it hampers the direct extraction of crystallization evolution information. Exploring facile room-temperature strategies for both synthesizing MCOFs and exploiting the crystallinity mechanism is extremely desired. Herein, by a novel single-phase synthetic strategy, three MCOFs with different microstructure is rapidly prepared based on the Schiff base reaction between planarity-tunable C3v monomers and metallated monomers at room temperature. Based on detailed time-dependent experiments and theoretical calculations, it is found that there is a planarity-tuned and competitive growth relationship between disordered structures and crystal nucleus for the first time. The high planarity of monomers boosts the formation of crystal nucleus and rapid growth, suppressing the forming of amorphous structures. In addition, the microenvironment effect on selective photocatalytic coupling of benzylamine (BA) is investigated. The strong donor-acceptor (D-A) MCOF exhibits efficient photocatalytic activity with a high conversion rate of 99% and high selectivity of 99% in 5 h under the 520 nm light irradiation. This work opens a new pathway to scalable and efficient synthesis of highly crystalline MCOFs.
Collapse
Affiliation(s)
- Dongchuang Wu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Qiongshan Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiyu Yin
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Congying Song
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Dong Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Tang YY, Luo X, Xia RQ, Luo J, Peng SK, Liu ZN, Gao Q, Xie M, Wei RJ, Ning GH, Li D. Molecular Engineering of Metal-Organic Frameworks for Boosting Photocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2024; 63:e202408186. [PMID: 38895811 DOI: 10.1002/anie.202408186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
The development of novel metal-organic frameworks (MOFs) as efficient photocatalysts for hydrogen peroxide production from water and oxygen is particularly interesting, yet remains a challenge. Herein, we have prepared four cyclic trinuclear units (CTUs) based MOFs, exhibiting good light absorption ability and suitable band gaps for photosynthesis of H2O2. However, Cu-CTU-based MOFs are not able to photocatalyzed the formation of H2O2, while the alteration of metal nodes from Cu-CTU to Ag-CTU dramatically enhances the photocatalytic performance for H2O2 production and the production rates can reach as high as 17476 μmol g-1 h-1 with an apparent quantum yield of 4.72 %, at 420 nm, which is much higher than most reported MOFs. The photocatalytic mechanism is comprehensively studied by combining the isotope labeling experiments and DFT calculation. This study provides new insights into the preparation of MOF photocatalysts with high activity for H2O2 production through molecular engineering.
Collapse
Affiliation(s)
- Yu-Ying Tang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ri-Qin Xia
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Jie Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Su-Kao Peng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Zhen-Na Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Qiang Gao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
10
|
Lan X, Li H, Liu Y, Zhang Y, Zhang T, Chen Y. Covalent Organic Framework with Donor 1-Acceptor-Donor 2 Motifs Regulating Local Charge of Intercalated Single Cobalt Sites for Photocatalytic CO 2 Reduction to Syngas. Angew Chem Int Ed Engl 2024; 63:e202407092. [PMID: 38773811 DOI: 10.1002/anie.202407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/24/2024]
Abstract
Covalent organic framework (COF) has attracted increasing interest in photocatalytic CO2 reduction, but it remains a challenge to achieve high conversion efficiency owing to the insufficient active site and fast charge recombination. Rationally optimizing the electronic structures of COF to regulate the local charge of active sites precisely is the key point to improving catalytic performance. Herein, intercalated single Co sites coordinated by imine-N motifs have been designed by using trinuclear copper-based imine-COFs with distinct electronic moieties via a molecular engineering strategy. It is confirmed that the charge delivery property and local charge distribution of these heterometallic frameworks can be profoundly influenced by electronic structures. Among these featured structures with mixed-state copper clusters, Co/Cu3-TPA-COF stands out for an exceptional photocatalytic CO2 reduction activity and tunable syngas (CO/H2) ratio by changing various bipyridines. Experimental and theoretical results indicate that interlayer Co-imine N motifs on the donor1-acceptor-donor2 structures facilitate the formation of a highly separated electron-hole state, which effectively induces the oriented electron transfer from dual electron donors to Co centers, achieving an enhanced CO2 activation and reduction. This work opens up an avenue for the design of high-performance COF-based catalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Xingwang Lan
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Hangshuai Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yuemeng Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yize Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Hu S, Gao ML, Huang J, Wang H, Wang Q, Yang W, Sun Z, Zheng X, Jiang HL. Introducing Hydrogen-Bonding Microenvironment in Close Proximity to Single-Atom Sites for Boosting Photocatalytic Hydrogen Production. J Am Chem Soc 2024; 146:20391-20400. [PMID: 38987861 DOI: 10.1021/jacs.4c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru1 catalysts, namely, Ru1/UiO-67-X (X = -H, -m-(NH2)2, -o-(NH2)2), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru1 sites is modulated by altering the location of amino groups. The -NH2 group can form hydrogen bonds with H2O, constituting a unique microenvironment that causes an increased water concentration around the Ru1 sites. Remarkably, Ru1/UiO-67-o-(NH2)2 displays a superior photocatalytic hydrogen production rate, ∼4.6 and ∼146.6 times of Ru1/UiO-67-m-(NH2)2 and Ru1/UiO-67, respectively. Both experimental and computational results suggest that the close proximity of amino groups to the Ru1 sites in Ru1/UiO-67-o-(NH2)2 improves charge transfer and H2O dissociation, accounting for the promoted photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiajia Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Chen X, Song JY, Zheng J, Wang YM, Luo J, Weng P, Cai BC, Lin XC, Ning GH, Li D. Metal Variance in Multivariate Metal-Organic Frameworks for Boosting Catalytic Conversion of CO 2. J Am Chem Soc 2024; 146:19271-19278. [PMID: 38950195 DOI: 10.1021/jacs.4c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal-organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO2. The catalytic performance of these MTV-MOFs can be engineered by fine-tuning the Ag/Cu ratio in the framework. Interestingly, the induction of 10% Ag remarkably improved the catalytic efficiency with a turnover frequency (TOF) of 243 h-1, which is 20-fold higher than that of 100% Cu-based MOF (i.e., TOF = 10.8 h-1). More impressively, such a bimetallic MOF still exhibited high catalytic activity even for simulated flue gas with 10% CO2 concentration. Furthermore, the reaction mechanism has been examined through the employment of NMR monitoring experiments and DFT calculations.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jing-Yi Song
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jie Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Puxin Weng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Bing-Chen Cai
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Chun Lin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Yang L, Yuan Z, He L, Han L, Li B, Xu Y. Polyoxometalate Functionalized Cyclic Trinuclear Copper Compounds for Bifunctional Electrochemical Detection and Photocatalytic Reduction of Cr(VI). Inorg Chem 2024; 63:12564-12571. [PMID: 38920359 DOI: 10.1021/acs.inorgchem.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The design and intentional construction of crystalline materials containing two clusters with redox properties in one framework still remains challenging. Linking oxidative polyoxometalate (POM) clusters and a reductive cyclic trinuclear copper complex (Cu-CTC) to prepare stable catalysts is rarely reported. Herein, we successfully obtained two new polyoxometalate-based metal-organic compounds (POMOCs) [CuII3(PyCA)3(μ3-OH)(β-Mo8O26)0.5(H2O)2]·5H2O (1), [CuII3(PyCA)3(μ3-OH)]2(CuIIW12O40)[CuII(H2O)6] (2) (PyCA = 1H-pyrazole-4-carbaldehyde) by enabling precursors of Cu-CTC and POM cocrystallization in one pot via hydrothermal method. The [β-Mo8O26]4- cluster in compound 1 combined with Cu-CTC units to form a 1D structure, and the [CuW12O40]6- unit in compound 2 linked two Cu-CTC units to form a sandwich-like 0D structure. Also, Cu-CTC CuI3(PyCA)3·H2O (Cu3) was synthesized for performance comparison. A series of characterizations indicate that compound 1 is more conducive to electron transfer than compound 2. In addition, compounds 1 and 2 can act as bifunctional catalysts for the electrochemical detection and photocatalytic reduction of Cr(VI). Particularly, the photoreduction rates of Cr(VI) by compounds 1 and 2 are 96.7% and 96.3% for only 10 and 14 min under visible light, respectively, and it is better than that of Cu3 and most other reported photocatalysts. Furthermore, the active sites and mechanisms for electrochemical detection and photocatalytic reduction of Cr(VI) were discussed.
Collapse
Affiliation(s)
- Lin Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Zhou Yuan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Lufang He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Le Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Bohan Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|
14
|
Li Q, Yan Y, Jiang Z, Chen T, Li Q. Three-Component Construction of Mesoporous Metal-Organic Frameworks and Their Incorporation into Solid Polymer Electrolytes for Li-Ion Conduction. Inorg Chem 2024; 63:10585-10593. [PMID: 38798023 DOI: 10.1021/acs.inorgchem.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Solid electrolytes with high ionic conductivity and satisfactory electrochemical stability are essential for the development of solid-state batteries. However, current strategies, including polymer (and polymer-based composite) electrolytes, still face challenges in meeting the bar set by real operations. We seek to improve the Li-ion conduction of the electrolytes by incorporating mesoporous metal-organic frameworks (MOFs) into the polymer matrix. Specifically, MOFs with pores larger than 3.0 nm are constructed by three-component reactions that involve the construction of both coordinative and dynamic imine linkages. The MOFs allow polymer penetration and amorphization and efficient lithium salt dissociation in the confined channels. Numerous metal sites and organic functionalities in the MOF backbone further assist the ion migration by providing strong interactions with the fluorinated polymer and the Li+. Remarkable ionic conductivity (0.95 mS cm-1) and a large lithium transference number (0.64) are achieved. Overall, the study fully utilizes both the MOF structural units with atomic precision and the encompassed space at the mesoscale for solid-state electrolyte development.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yu Yan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhongwen Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tianhao Chen
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
15
|
Wang YM, Ning GH, Li D. Multifunctional Metal-Organic Frameworks as Catalysts for Tandem Reactions. Chemistry 2024; 30:e202400360. [PMID: 38376356 DOI: 10.1002/chem.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Owing to well-defined structure as well as easy synthesis and modification, metal-organic frameworks (MOFs) have emerged as promising catalysts for tandem reactions. In this article, we aim to summarize the development of multifunctional MOFs, including mixed metal MOFs, MOFs that are synergistically catalyzed by metal nodes and organic linkers, MOFs loaded with metal nanoparticles, etc, as heterogenous catalysts for tandem reactions over the past five years. This concept briefly discusses on present challenges, future trends, and prospects of multifunctional MOFs catalysts in tandem reactions.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
16
|
Han WK, Liu X, Zhu RM, Fu JX, Liu Y, Zhang J, Pang H, Gu ZG. Panchromatic Light-Harvesting Three-Dimensional Metal Covalent Organic Frameworks for Boosting Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38691148 DOI: 10.1021/acsami.4c04468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Constructing artificial photocatalysts with panchromatic solar energy utilization remains an appealing challenge. Herein, two complementary photosensitizers, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) and porphyrin dyes, have been cosensitized in metal covalent organic frameworks (MCOFs), resulting in the MCOFs with strong light absorption covering the full visible spectrum. Under panchromatic light irradiation, the cosensitized MCOFs exhibited remarkable photocatalytic H2 evolution with an optimum rate of up to 33.02 mmol g-1 h-1. Even when exposed to deep-red light (λ = 700 ± 10 nm), a commendable H2 production (0.79 mmol g-1 h-1) was still obtained. Theoretical calculation demonstrated that the [Ru(bpy)3]2+ and porphyrin modules in our MCOFs have a synergistic effect to trigger an interesting dual-channel photosensitization pathway for efficient light-harvesting and energy conversion. This work highlights the potential of combining multiple PSs in MCOFs for panchromatic photocatalysis.
Collapse
Affiliation(s)
- Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Zhai Z, Bai Q, Guan YM, Zhao H, Wu T, Pang J, Xu H, Xie TZ, Zhang Z, Wang P. Metal-ion-determined geometrical configurations of metallo-cages with different emission properties. Dalton Trans 2024; 53:7555-7560. [PMID: 38602370 DOI: 10.1039/d4dt00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of metallo-cages is affected by a variety of factors such as the ligands, metals, and anions, among which the impact of metals with different binding capacities is particularly important, but has rarely been studied in three-dimensional metallo-cages. Herein, we report the design of truxene-centered terpyridine ligands and the self-assembly of a series of tetrameric metallo-cages. The utilization of metal ions with strong (Zn2+, Fe2+) or weak (Cd2+) binding strength afforded 3D metallo-cages with low symmetry or highly symmetric metallo-tetrahedra, respectively, possessing totally different geometrical configurations. In addition, their photophysical properties and host-guest chemical properties were investigated.
Collapse
Affiliation(s)
- Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jingxian Pang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Haoxuan Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
19
|
Peng S, Sun Y, Li Q, Jiang Z, Rao Y, Wu Y, Li Q. Stepwise construction of coordinative linkages and dynamic covalent linkages for a porous metal-organic framework. Chem Commun (Camb) 2024; 60:1488-1491. [PMID: 38224189 DOI: 10.1039/d3cc05650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A cyclic trinuclear complex is synthesized from AgI and 1H-pyrazole-4-carbaldehyde. Reticulation of the complex with 1,3,5-tris(4-aminophenyl)benzene through Schiff-base reaction affords a porous FDM-72 framework. Amine choice is systematically investigated as it may initiate metal reduction. This study proposes a new route and its amine selection criterion to synthesize Ag-based frameworks.
Collapse
Affiliation(s)
- Shuyin Peng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Yuqian Sun
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qingqing Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Zhongwen Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
20
|
Song JY, Chen X, Wang YM, Luo X, Zhang TE, Ning GH, Li D. Tuning the Catalytic Activity of Covalent Metal-Organic Frameworks for CO 2 Cycloaddition Reactions. Chem Asian J 2023; 18:e202300857. [PMID: 37927167 DOI: 10.1002/asia.202300857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
The development of efficient, recyclable and low-cost heterogeneous catalysts for conversion of carbon dioxide (CO2 ) into epoxides is highly desired, yet remain a challenge. Herein, we have prepared three two-dimensional (2D) copper(I) cyclic trinuclear units (Cu(I)-CTUs) based covalent metal-organic frameworks (CMOFs), namely JNM-13, JNM-14, and JNM-15, via a one-pot reaction by combination of coordination and dynamic covalent chemistry. Among them, JNM-15 contained the highest density of copper catalytic sites, and exhibited the highest capacity for adsorption of CO2 . More interestingly, JNM-15 delivered the highest catalytic activity for cycloaddition of CO2 to epoxides with good yields (up to 99 %), good substrate compatibility (11 examples) and reusability (four catalytic cycles) under mild condition.
Collapse
Affiliation(s)
- Jing-Yi Song
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tian-E Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
21
|
Peng SK, Yang H, Luo D, Ning GH, Li D. A Highly NIR Emissive Cu 16 Pd 1 Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306863. [PMID: 37963848 DOI: 10.1002/smll.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Indexed: 11/16/2023]
Abstract
The construction of stable copper nanoclusters (Cu-NCs) with near-infrared (NIR) emission that can be used for catalysis is highly desired, yet remains a challenge. Herein, an atomically precise bimetallic Cu/Pd NC with a molecular formula of Cu16 Pd1 L10 (PPh3 )2 (Pz)6 (Pz = 3,5-(CF3 )2 Pyrazolate, L = 4-CH3 OPhC≡C- ), abbreviated as Cu16 Pd1 , is synthesized. Single-crystal X-ray crystallographic analysis of Cu16 Pd1 reveals a Cu10 Pd1 kernel with pseudo-gyroelongated square bipyramid confirmation surrounded by other 6 Cu(I) ions and protected ligands. Interestingly, it exhibits strong NIR emission with the highest photoluminescence quantum yield (PLQY) among all the Cu NCs/Cu alloys (λem > 800 nm) in the solid-state, and also displays NIR emission in solution. Experimental results and theoretical calculations suggest that the impressive NIR emission is attributed to abundant supramolecular interactions in the solid-state, including intramolecular metal-metal and intermolecular interactions. Of note, the bimetallic Cu16 Pd1 can catalyze the reduction of 4-nitrophenol. This work provides a novel method for synthesizing Cu/Pd NCs and reminds that the less studied Cu/Pd NC can serve as outstanding luminescent material, which is seldom noticed in atomically precise nanoclusters.
Collapse
Affiliation(s)
- Su-Kao Peng
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Hu Yang
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|