1
|
Zhang ZY, Li ZJ, Tang YH, Hou TT, Xu L, Wang ZH, Qin TY, Wang YL, Zhu MQ. Tailoring near-infrared amyloid-β probes with high-affinity and low background based on CN and amphipathic regulatory strategies and in vivo imaging of AD mice. Talanta 2025; 281:126858. [PMID: 39260248 DOI: 10.1016/j.talanta.2024.126858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Amyloid-β (Aβ) species (Aβ fibrils and Aβ plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aβ probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design. In this study, we propose molecular design strategy that incorporates CN group and amphiphilic modulation to synthesize a series of amphiphilic NIR I Aβ probes, surpassing the commercial probe ThT and ThS. Theoretical calculations indicate that these probes exhibit stronger interaction with amino acid residues in the cavities of Aβ. Notably, the probes containing CN group display the ability of binding two distinct sites of Aβ, which dramatically enhanced the affinity to Aβ species. Furthermore, these probes exhibit minimal fluorescence in aqueous solution and offer ultra-high signal-to-noise ratio (SNR) for in vitro labeling, even in wash-free samples. Finally, the optimal probe DM-V2CN-PYC3 was utilized for in vivo imaging of AD mice, demonstrating its rapid penetration through the blood-brain barrier and labelling to Aβ species. Moreover, it enabled long-term monitoring for a duration of 120 min. These results highlight the enhanced affinity and superior performance of the designed NIR I Aβ probe for AD diagnosis. The molecular design strategy of CN and amphiphilic modulation presents a promising avenue for the development Aβ probes with low background in vivo/in vitro imaging for Aβ species.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ze-Jun Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ying-Hao Tang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ting-Ting Hou
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Liang Xu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhao-Hui Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Tian-Yi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ming-Qiang Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
2
|
Bhattacharjee R, Lemke EA. Potential vs Challenges of Expanding the Protein Universe With Genetic Code Expansion in Eukaryotic Cells. J Mol Biol 2024; 436:168807. [PMID: 39357814 DOI: 10.1016/j.jmb.2024.168807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Following decades of innovation and perfecting, genetic code expansion has become a powerful tool for in vivo protein modification. Some of the major hurdles that had to be overcome include suboptimal performance of GCE-specific translational components in host systems, competing cellular processes, unspecific modification of the host proteome and limited availability of codons for reassignment. Although strategies have been developed to overcome these challenges, there is critical need for further advances. Here we discuss the current state-of-the-art in genetic code expansion technology and the issues that still need to be addressed to unleash the full potential of this method in eukaryotic cells.
Collapse
Affiliation(s)
- Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany; IMB International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
3
|
Lampkin BJ, Goldberg BJ, Kritzer JA. Multiplexed no-wash cellular imaging using BenzoTag, an evolved self-labeling protein. Chem Sci 2024; 15:d4sc05090h. [PMID: 39430930 PMCID: PMC11487927 DOI: 10.1039/d4sc05090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Self-labeling proteins are powerful tools for exploring biology as they enable the precise cellular localization of a synthetic molecule, often a fluorescent dye. HaloTag7 is the most popular self-labeling protein due to its broad utility, its bio-orthogonality, and the simplicity of its chloroalkane ligand. However, reaction rates of HaloTag7 with different chloroalkane-containing substrates are highly variable and rates are only very fast for rhodamine-based dyes. This is a major limitation for the HaloTag system because fast labeling rates are critical for live-cell assays. Here, we use yeast surface display to produce a HaloTag variant, BenzoTag, with improved performance with a fluorogenic benzothiadiazole dye. Molecular evolution improved conjugation kinetics and increased the signal from the dye-protein complex, allowing for robust, no-wash fluorescence labeling in live cells. The new BenzoTag-benzothiadiazole system has improved performance compared to the best existing HaloTag7-silicon rhodamine system, including saturation of intracellular enzyme in under 100 seconds and robust labeling at dye concentrations as low as 7 nM. The BenzoTag system was also found to be sufficiently orthogonal to the HaloTag7-silicon rhodamine system to enable multiplexed no-wash labeling in live cells. The BenzoTag system will be immediately useful for a large variety of cell-based assays monitoring biological processes and drug action in real time.
Collapse
Affiliation(s)
- Bryan J Lampkin
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | | | | |
Collapse
|
4
|
Tong X, Chen J, Wang M, Liu J, Li J, Wang X, Zuo Y, Xu X, Wang Y, Wang B, Guo W, Zheng Y. Development of a Bioorthogonal Click-to-Release Reaction for Hydrogen Polysulfide (H 2S n) Detection. Anal Chem 2024; 96:15631-15639. [PMID: 39287125 DOI: 10.1021/acs.analchem.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we present an innovative "click-to-release" strategy for the design of highly specific H2Sn bioorthogonal probes that undergo a specific click reaction with H2Sn and release fluorophores by a following rearrangement. A library of cyclooctyne derivatives was established and successfully demonstrated the availability of the release strategy. Then, a model probe CM-CT was synthesized, which can achieve effective fluorophore release (>80%) in the presence of a H2Sn donor. To further validate the application of this class of probes, a new probe QN-RHO-CT based on Rhodamine 110 was developed. This probe showed good water solubility (>160 μM) and fast release kinetics and can achieve selective H2Sn detection in living cells. We used this probe to study the process of H2S-mediated protein S-persulfidation and demonstrated that excess H2S would directly react with protein persulfides to generate H2S2 and reduce the persulfides to thiols. Additionally, we elucidated the click-to-release mechanism in our design through a detailed mechanistic study, confirming the generation of the key intermediate α, β-unsaturated cyclooctanethione. This bioorthogonal click-to-release reaction provides a useful tool for investigating the function of H2Sn and paves the way for biological studies on H2Sn.
Collapse
Affiliation(s)
- Xidan Tong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Maolin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yifei Zuo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yichen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
5
|
He J, Hu P, Wang M, Qi G, Huang H, Zeng D, Guan J, Lv P, Liu L. Utilization of chitosan nanocomposites loaded with quantum dots enables efficient and traceable DNA delivery. Colloids Surf B Biointerfaces 2024; 245:114221. [PMID: 39260273 DOI: 10.1016/j.colsurfb.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Chitosan is widely employed in gene carriers due to its excellent gene loading capacity, ease of modification, and exceptional biodegradability. However, low gene delivery efficiency, high cytotoxicity, and lack of tracer biomimetic properties limit its clinical use. To address these issues, a novel biomimetic tracking gene delivery carrier, RBCm-C50kQT, was constructed by using the design scheme of cell membrane coated carbon quantum dots/chitosan. This carrier improves stability and tracking performance while embedding the cell membrane enhances biosafety. RBCm-C50kQT effectively carries and protects DNA, improving uptake and transfection efficiency with reduced cytotoxicity. It maintains strong fluorescence tracking and shows high uptake efficiencies of 83.62 % and 77.45 % in 293 T and HeLa cells, respectively, with maximum transfection efficiencies of 68.80 % and 45.47 %. This advancement supports gene therapy improvements and paves the way for future clinical applications.
Collapse
Affiliation(s)
- Jiayu He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guowei Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haoxiang Huang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peiwen Lv
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Liu Y, Yu L, She Z, Li L, Ji T, Li Y, Wang Y. Rhodamine 6G-PAH probes for heavy metal: Fluorescence detection, bioimaging, and solid-phase sensing application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125070. [PMID: 39232313 DOI: 10.1016/j.saa.2024.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Four rhodamine 6G-PAH probes with pyrene (R6G-Pyr), anthracene (R6G-Ant), acenaphthene (R6G-Acp) or phenanthrene (R6G-PA) as fluorophore were designed and synthesized for Hg(II) detection. Probe R6G-PA, which had the lowest detection limit of 0.84 nmol/L, displayed the best fluorescence performance as compared to the other three probes. This type of probe had good anti-interference properties against most common metal ions except Cu(II). Metal Cu(II) had a certain quenching effect on the fluorescence generated by Hg(II), with a minimum detection limit of 0.31 nmol/L (for R6G-Acp), indicating its potential practicability for Cu(II) detection. The structure-fluorescence relationship was discussed based on density functional theory (DFT) calculations, and R6G-PA + Hg(II), which had the minimum dihedral angle between polycyclic aromatic rings and rhodamine spiro ring, produced the strongest π-π accumulation and provided the brightest fluorescence. Probe R6G-PA was successfully employed for fluorescence detection of Hg(II) in biological samples. Its solid-phase sensor PS@R6G-PA was developed by immobilizing R6G-PA on PS microspheres for the determination of Hg(II) in water and food samples, with excellent reproducibility and fluorescence "on/off" response. The relative error of the spiked recovery rate was less than 10 %.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Lili Yu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Zhuxin She
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Ling Li
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Tailong Ji
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, PR China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
7
|
Chang H, Clemens S, Gao P, Li Q, Zhao H, Wang L, Zhang J, Zhou P, Johnsson K, Wang L. Fluorogenic Rhodamine-Based Chemigenetic Biosensor for Monitoring Cellular NADPH Dynamics. J Am Chem Soc 2024. [PMID: 39037873 DOI: 10.1021/jacs.3c13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ratiometric biosensors employing Förster Resonance Energy Transfer (FRET) enable the real-time tracking of metabolite dynamics. Here, we introduce an approach for generating a FRET-based biosensor in which changes in apparent FRET efficiency rely on the analyte-controlled fluorogenicity of a rhodamine rather than the commonly used distance change between donor-acceptor fluorophores. Our fluorogenic, rhodamine-based, chemigenetic biosensor (FOCS) relies on a synthetic, protein-tethered FRET probe, in which the rhodamine acting as the FRET acceptor switches in an analyte-dependent manner from a dark to a fluorescent state. This allows ratiometric sensing of the analyte concentration. We use this approach to generate a chemigenetic biosensor for nicotinamide adenine dinucleotide phosphate (NADPH). FOCS-NADPH exhibits a rapid and reversible response toward NAPDH with a good dynamic range, selectivity, and pH insensitivity. FOCS-NADPH allows real-time monitoring of cytosolic NADPH fluctuations in live cells during oxidative stress or after drug exposure. We furthermore used FOCS-NADPH to investigate NADPH homeostasis regulation through the pentose phosphate pathway of glucose metabolism. FOCS-NADPH is a powerful tool for studying NADPH metabolism and serves as a blueprint for the development of future fluorescent biosensors.
Collapse
Affiliation(s)
- Huimin Chang
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Simon Clemens
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
| | - Pingting Gao
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Quanlin Li
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Hanqing Zhao
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Lehua Wang
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Jingye Zhang
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Pinghong Zhou
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| |
Collapse
|
8
|
Wang C, Yuan R, Ma S, Miao Q, Zhao X, Liu Y, Bi S, Chen G. Developing NIR xanthene-chalcone fluorophores with large Stokes shifts for fluorescence imaging. Analyst 2024; 149:3372-3379. [PMID: 38712551 DOI: 10.1039/d4an00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.
Collapse
Affiliation(s)
- Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Rongrong Yuan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Siyue Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Qing Miao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
9
|
Yu Z, Shao H, Shao X, Yu L, Gao Y, Ren Y, Liu F, Meng C, Ling P, Chen Q. In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides. J Pharm Anal 2024; 14:100932. [PMID: 39021382 PMCID: PMC11253656 DOI: 10.1016/j.jpha.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 07/20/2024] Open
Abstract
Unlike chemosynthetic drugs designed for specific molecular and disease targets, active small-molecule natural products typically have a wide range of bioactivities and multiple targets, necessitating extensive screening and development. To address this issue, we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action. As a proof-of-concept, we investigated the behavior of mussel oligosaccharide (MOS-1) by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells. We recorded the entire dynamic process of the localization of fluorescein isothiocyanate (FITC)-MOS-1 to the lysosomes and visualized the distribution of the drug within the cell. Remarkably, lysosomes containing FITC-MOS-1 actively recruited lipid droplets, leading to fusion events and increased cellular lipid consumption. These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases. Furthermore, in a high-fat HepG2 cell model and in high-fat diet-fed apolipoprotein E (ApoE) -/- mice, MOS-1 significantly promoted triglyceride degradation, reduced lipid droplet accumulation, lowered serum triglyceride levels, and mitigated liver damage and steatosis. Overall, our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase, as this methodology contributes to the rapid identification of drug indications. Collectively, this methodology is significant for the screening and development of selective small-molecule drugs, and is expected to expedite the identification of candidate molecules with medicinal effects.
Collapse
Affiliation(s)
- Zhenjie Yu
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huarong Shao
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Linyan Yu
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yanan Gao
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Youxiao Ren
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250101, China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Peixue Ling
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Qixin Chen
- Key Laboratory for Biotechnology Drugs of National Health Commission, School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| |
Collapse
|
10
|
Jiang G, Liu H, Deng G, Liu H, Zhou Z, Ren TB, Wang L, Zhang XB, Yuan L. "Zero" Intrinsic Fluorescence Sensing-Platforms Enable Ultrasensitive Whole Blood Diagnosis and In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202400637. [PMID: 38409519 DOI: 10.1002/anie.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Guohui Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
11
|
Lampkin BJ, Goldberg BJ, Kritzer JA. BenzoHTag, a fluorogenic self-labeling protein developed using molecular evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564634. [PMID: 38617361 PMCID: PMC11014480 DOI: 10.1101/2023.10.29.564634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Self-labeling proteins are powerful tools in chemical biology as they enable the precise cellular localization of a synthetic molecule, often a fluorescent dye, with the genetic specificity of a protein fusion. HaloTag7 is the most popular self-labeling protein due to its fast labeling kinetics and the simplicity of its chloroalkane ligand. Reaction rates of HaloTag7 with different chloroalkane-containing substrates is highly variable and rates are only very fast for rhodamine-based dyes. This is a major limitation for the HaloTag system because fast labeling rates are critical for live-cell assays. Here, we report a molecular evolution system for HaloTag using yeast surface display that enables the screening of libraries up to 108 variants to improve reaction rates with any substrate of interest. We applied this method to produce a HaloTag variant, BenzoHTag, which has improved performance with a fluorogenic benzothiadiazole dye. The resulting system has improved brightness and conjugation kinetics, allowing for robust, no-wash fluorescent labeling in live cells. The new BenzoHTag-benzothiadiazole system has improved performance in live-cell assays compared to the existing HaloTag7-silicon rhodamine system, including saturation of intracellular enzyme in under 100 seconds and robust labeling at dye concentrations as low as 7 nM. It was also found to be orthogonal to the silicon HaloTag7-rhodamine system, enabling multiplexed no-wash labeling in live cells. The BenzoHTag system, and the ability to optimize HaloTag for a broader collection of substrates using molecular evolution, will be very useful for the development of cell-based assays for chemical biology and drug development.
Collapse
|
12
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|