1
|
Liu R, Xu YS, Zhou R, Tan SJ, Li YN, Jiang SJ, Xin S, Guo YG, Cao FF. Localized High-Concentration Electrolyte for All-Carbon Rechargeable Dual-Ion Batteries with Durable Interfacial Chemistry. Angew Chem Int Ed Engl 2025; 64:e202416610. [PMID: 39477810 DOI: 10.1002/anie.202416610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 11/19/2024]
Abstract
Lithium-based rechargeable dual-ion batteries (DIBs) based on graphite anode-cathode combinations have received much attention due to their high resource abundance and low cost. Currently, the practical realization of the batteries is hindered by easy oxidation of the electrolyte at the cathode interface, and solvent co-intercalation at the anode-electrolyte interface. Configuration of a "solvent-in-salt" electrolyte with a high concentration of Li salt is expected to stabilize the electrolyte chemistry versus both electrodes, yet inevitably reduces the mobility of the solvated working ions and increases the cost of the electrolyte. Herein, we propose to build a localized high-concentration electrolyte by adding hydrofluoroether as the diluent to reduce the salt content while improving the solvation structure, allowing more anions to enter the inner solvation sheath. The new electrolyte helps to form uniform and thin interfaces, with elevated contents of inorganic fluorides, on both electrodes, which effectively suppress electrolyte oxidation at the cathode and optimize electrolyte-electrode compatibility at the anode while facilitating charge transfer across the interface. Consequently, the DIBs with graphite as anode and cathode operate for 3000 cycles and retain a high-capacity retention of 95.7 %, highlighting the importance of stable interfacial chemistry in boosting the electrochemical performance of DIBs.
Collapse
Affiliation(s)
- Rui Liu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yan-Song Xu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Rui Zhou
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Shuang-Jie Tan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yun-Nuo Li
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Si-Jie Jiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Fei-Fei Cao
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
2
|
Dou F, Sun Y, Guo X, Yin C, Zhou H, Chen G, Pang H, Zhang D. Study of Interfacial Reaction Mechanism of Silicon Anodes with Different Surfaces by Using the In Situ Spectroscopy Technique. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2403-2412. [PMID: 39780380 DOI: 10.1021/acsami.4c13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The interfacial reaction of a silicon anode is very complex, which is closely related with the electrolyte components and surface elements' chemical status of the Si anode. It is crucial to elucidate the formation mechanism of the solid electrolyte interphase (SEI) on the silicon anode, which promotes the development of a stable SEI. However, the interface reaction mechanism on the silicon surface is closely related to the surface components. This work systematically investigates the interfacial reaction mechanism on silicon materials with three representative coatings of graphene, TiO2, and SiO2 by ex situ X-ray photoelectron spectroscopy (XPS) and dynamic analysis in operando attenuated total reflection-Fourier transform infrared (ATR-FTIR), in situ revealing the different ring-opening mechanisms of fluoro-ethylene carbonate (FEC) and ethylene carbonate (EC) on different silicon surfaces with varying electrical conductivities. Due to the different ring-opening mechanisms, the final decomposition product of FEC on the graphene/electrolyte interface is stable LiF, while on the oxide (native SiO2 or emerging TiO2) interface, it forms an unstable solid lithium compound •CH2CHFOCO2Li. This study demonstrates that the formation mechanism of the SEI on silicon-based electrodes is related to the electron conductivity of surface elements, providing a theoretical basis for further optimization of silicon-based composite materials.
Collapse
Affiliation(s)
- Fei Dou
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chenhui Yin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Guorong Chen
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Dengsong Zhang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Dai L, Cai M, Zhou X, Liang W, Zhao Z, Xia Z, Huang F, Jiang J, Jiang W, Zhang B, Ma Z. Catalysis of a LiF-rich SEI by aromatic structure modified porous polyamine for stable all-solid-state lithium metal batteries. Chem Sci 2025:d4sc07449a. [PMID: 39790988 PMCID: PMC11708831 DOI: 10.1039/d4sc07449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Poly(ethylene oxide) (PEO)-based solid-state polymer electrolyte (SPE) is a promising candidate for the next generation of safer lithium-metal batteries. However, the serious side reaction between PEO and lithium metal and the uneven deposition of lithium ions lead to the growth of lithium dendrites and the rapid decline of battery cycle life. Building a LiF-rich solid electrolyte interface (SEI) layer is considered to be an effective means to solve the above problems. Here, porous organic polymers (POPs) with aromatic structures and non-aromatic structures were synthesized and introduced into the PEO-based SPE as fillers to explore the effect of aromatic structures on LiF-rich SEI formation. The results show that the POPs containing aromatic groups could catalyze the decomposition of LiTFSI to form a stable LiF-rich SEI layer and inhibit the growth of lithium dendrites. The discharge capacity of the LFP/Li battery is 103 mA h g-1 after 500 cycles at 1C (100 °C). It provides a promising way to improve the stability of the solid electrolyte matrix and SEI layer.
Collapse
Affiliation(s)
- Lijie Dai
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Min Cai
- China Nuclear Power Engineering Co., Ltd. Beijing 100048 China
| | - Xuanyi Zhou
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Weizhong Liang
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Zishao Zhao
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Zixiang Xia
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Fenfen Huang
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Jie Jiang
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University Hunan 411105 China
| | - Wenjuan Jiang
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
| | - Biao Zhang
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University Hunan 411105 China
| | - Zengsheng Ma
- School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University Hunan 411105 China
| |
Collapse
|
4
|
Liu L, Zhu L, Wang Y, Guan X, Zhang Z, Li H, Wang F, Zhang H, Zhang Z, Yang Z, Ma T. Starfish-Inspired Solid-State Li-ion Conductive Membrane with Balanced Rigidity and Flexibility for Ultrastable Lithium Metal Batteries. Angew Chem Int Ed Engl 2024:e202420001. [PMID: 39658516 DOI: 10.1002/anie.202420001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
The performance of solid-state lithium-metal batteries (SSLMB) is often constrained by the low ionic conductivity, narrow electrochemical window, and insufficient mechanical strength of polyethylene oxide (PEO)-based electrolytes. Inspired by the soft-outside, rigid-inside structure of starfish, we designed multifunctional "starfish-type" composite polymer electrolytes (CPEs) using electrospinning technology. These CPEs feature a three-dimensional rigid skeleton network composed of polyacrylonitrile/metal-organic frameworks/ionic liquids (PAN/MOFs/ILs), creating continuous and efficient Li+ transport channels: MOFs impart rigidity, PEO acts as a cushioning outer layer to enhance interfacial compatibility, and ILs reduce interfacial resistance. The resulting CPEs exhibited excellent ionic conductivity (4.37×10-4 S cm-1), a wide electrochemical window (5.34 V), uniform lithium-ion flux, and a high transference number (0.69). Leveraging these synergistic advantages, the Li/CPEs/Li symmetric cell demonstrated outstanding dendrite suppression for over 1300 hours, and the LiFePO4/CPEs/Li cell retained 90.1 % capacity after 2100 cycles at 1.0 C, which is the best performance reported for SSLMB with MOF/PEO. The formation of multi-component solid-electrolyte interphase and its role in stabilizing lithium metal cycling were systematically elucidated through theoretical simulations and spectroscopic analysis. This nature-inspired design provides a promising strategy for the development of stable solid-state electrolytes with extended lifespans.
Collapse
Affiliation(s)
- Liequan Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Lingfeng Zhu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Youliang Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xinwei Guan
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Zhenfang Zhang
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Fan Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Hai Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ze Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhenyu Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Zhang D, Ouyang Y, Wang Y, Liu L, Wang H, Cui J, Wang M, Li N, Zhao H, Ding S. A gradient-distributed binder with high energy dissipation for stable silicon anode. J Colloid Interface Sci 2024; 673:312-320. [PMID: 38878366 DOI: 10.1016/j.jcis.2024.06.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 07/26/2024]
Abstract
Silicon is considered as a promising alternative to traditional graphite anode for lithium-ion batteries. Due to the dramatic volume expansion of silicon anode generated from the insertion of Li+ ions, the binder which can suppress the severe volume change and repeated massive stress impact during cycling is required greatly. Herein, we design a gradient-distributed two-component binder (GE-PAA) to achieve excellent cyclic stability, and reveal the mechanism of high energy dissipative binder stabilized silicon electrodes. The inner layer of the electrode is the polyacrylic acid polymer (PAA) with high Young's modulus, which is used as the skeleton binder to stabilize the silicon particle interface and the electrode structure. The outer layer is the gel electrolyte polymer (GE) with lower Young's modulus, which releases the stress generated during the lithiation and de-lithiation process effectively, achieving the high structural stability at the molecular level and silicon particles. Due to the synergistic effect of the gradient binder design, the silicon electrode retains a reversible capacity of 1557.4 mAh g-1 after 200 cycles at the current density of 0.5 C and 1539.2 mAh g-1 at a high rate of 1.8 C. This work provides a novel binder design strategy for Si anode with long cycle stability.
Collapse
Affiliation(s)
- Dongyang Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Ouyang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yong Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Limin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haijie Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jia Cui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingyue Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Na Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
6
|
Zhao L, Xu A, Cheng Y, Xu H, Xu L, Mai L. A Highly Stable and Non-Flammable Deep Eutectic Electrolyte for High-Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202411224. [PMID: 39058557 DOI: 10.1002/anie.202411224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Deep eutectic electrolytes (DEEs) are regarded as one of the next-generation electrolytes to promote the development of lithium metal batteries (LMBs) due to their unparalleled advantages compared to both liquid electrolytes and solid electrolytes. However, its application in LMBs is limited by electrode interface compatibility. Here, we introduce a novel solid dimethylmalononitrile (DMMN)-based DEE induced by N coordination to dissociate LiTFSI. We confirmed that the DMMN molecule can promote the dissociation of LiTFSI by the interaction between the N atom and Li+, and form the hydrogen bond with TFSI- anion, which can promote the dissociation of LiTFSI to form DEE. More importantly, due to the absence of active α-hydrogen, DMMN exhibits greatly enhanced reduction stability with Li metal, resulting in favorable electrode/electrolyte interface compatibility. Polymer electrolytes based on this DEE exhibit high ionic conductivity (0.67 mS cm-1 at 25 °C), high oxidation voltage (5.0 V vs. Li+/Li), favorable interfacial stability, and nonflammability. Li‖LFP and Li‖NCM811 full batteries utilizing this DEE polymer electrolyte exhibit excellent long-term cycling stability and excellent rate performance at high rates. Therefore, the new DMMN-based DEE overcomes the limitations of traditional electrolytes in electrode interface compatibility and opens new possibilities for improving the performance of LMBs.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Ao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Yu Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Hantao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, P.R. China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, P.R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, P.R. China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, P.R. China
| |
Collapse
|
7
|
Yang P, Wu Z, Li M, Zhang C, Wang Y, Zhu Y, Li M, Wang Y, Li DS, Chen H, Zhang S. Multifunctional Nanocomposite Polymer-integrated Ca-doped CeO 2 Electrolyte for Robust and High-rate All-solid-state Sodium-ion Batteries. Angew Chem Int Ed Engl 2024:e202417778. [PMID: 39420081 DOI: 10.1002/anie.202417778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Due to the seamless interfaces between solid polymer electrolytes (SPEs) and electrode materials, SPEs-based all-solid-state sodium-ion batteries (ASSSIBs) are considered promising energy storage systems. However, the sluggish Na+ transport and uncontrollable Na dendrite propagation still hinder the practical application of SPEs-based ASSSIBs. Herein, Ca-doped CeO2 (Ca-CeO2) nanotube framework is synthesized and integrated with poly (ethylene oxide) methyl ether acrylate-perfluoropolyether copolymer (PEOA-PFPE), resulting in multifunctional solid nanocomposite electrolytes (namely SNEs, i.e., PEOA-PFPE/Ca-CeO2). Our investigations demonstrate that the fluorous effect incurred by the fluorine-containing PEOA-PFPE and the oxygen vacancy effect induced by the Ca-CeO2 framework could synergistically promote the dissociation of sodium salt, ultimately enhancing the Na+ mobility in SNEs. Besides, the resultant SNEs construct rapid Na+ transport channels and homogenize the Na deposition in SNEs/Na interface, which effectively prevents the Na dendrite growth. Furthermore, the assembled carbon-coated sodium vanadium phosphate (NVP@C)||PEOA-PFPE/Ca-CeO2||Na coin cell delivers impressive rate capability of 97.9 mAh g-1 at 2 C and outstanding cycling stability with capacity retention of 84.3 % after 300 cycles at 1 C. This work illustrates that constructing multifunctional SNEs via incorporating functional inorganic frameworks into fluorine-containing SPEs could be a promising strategy for the commercialization of robust and high-performance ASSSIBs.
Collapse
Affiliation(s)
- Pan Yang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Zhenzhen Wu
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Mingli Li
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yutong Zhu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Yun Wang
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Hao Chen
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Shanqing Zhang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
8
|
Zhang M, Pal U, Makhlooghiazad F, O’Dell LA, Kondou S, Elia GA, Gerbaldi C, Forsyth M. Advanced High-Voltage Electrolyte Design Using Poly(ethylene Oxide) and High-Concentration Ionic Liquids for All-Solid-State Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39369341 PMCID: PMC11492175 DOI: 10.1021/acsami.4c11114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are among the most promising materials for solid-state lithium metal batteries (LMBs) due to their inherent safety advantages; however, they suffer from insufficient room-temperature ionic conductivity (up to 10-6 S cm-1) and limited oxidation stability (<4 V). In this study, a novel "polymer-in-high-concentrated ionic liquid (IL)" (PiHCIL) electrolyte composed of PEO, N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (C3mpyrFSI) IL, and LiFSI is designed. The EO/[Li/IL] ratio has been widely varied, and physical and electrochemical properties have been explored. The Li-coordination and solvation structure has been explored through Fourier-transform infrared spectroscopy and solid-state magic-angle spinning nuclear magnetic resonance. The newly designed electrolyte provides a promisingly high oxidative stability of 5.1 V and offers high ambient temperature ionic conductivity of 5.6 × 10-4 S cm-1 at 30 °C. Li|Li symmetric cell cycling shows very stable and reversible cycling of Li metal over 100 cycles and a smooth dendrite-free deposition morphology. All-solid-state cells using a composite lithium iron phosphate cathode exhibit promising cycling with 99.2% capacity retention at a C/5 rate over 100 cycles. Therefore, the novel approach of PiHCIL enables a new pathway to design high-performing SPEs for high-energy-density all-solid-state LMBs.
Collapse
Affiliation(s)
- Mingjie Zhang
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- Institute
for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia
| | - Urbi Pal
- Institute
for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia
| | - Faezeh Makhlooghiazad
- Institute
for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia
| | - Luke A. O’Dell
- Institute
for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia
| | - Shinji Kondou
- Institute
for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia
| | - Giuseppe A. Elia
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Claudio Gerbaldi
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Maria Forsyth
- Institute
for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia
| |
Collapse
|
9
|
Zhang D, Shen Z, Li D, Ma Y, Zhao Z, Yang X, Xu S, Xiong Y, Xu J, Hu Y. Poly(ethylene oxide)-based composite solid electrolyte for long cycle life solid-state lithium metal batteries: Improvement of interface stability through a dual mechanism. J Colloid Interface Sci 2024; 670:385-394. [PMID: 38772255 DOI: 10.1016/j.jcis.2024.05.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel-symmetrical battery reaches 1.1 × 10-4 S cm-1 at room temperature, and a LiFePO4 (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhen Shen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dehua Li
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingyuan Ma
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiwei Zhao
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao Yang
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shilin Xu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yarui Xiong
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhong Xu
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Hu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Luo D, Ma X, Du P, Chen Z, Lin Q, Liu Y, Niu B, He X, Wang X. Reconstructing Solvation Structure by Steric Hindrance-Coordination Push-Pull of Dipolymer-H 2O-Zn 2+ toward Long-life Aqueous Zinc-Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202401163. [PMID: 38702974 DOI: 10.1002/anie.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Aqueous zinc-metal batteries are prospective energy storge devices due to their intrinsically high safety and cost effectiveness. Yet, uneven deposition of zinc ions in electrochemical reduction and side reactions at the anode interface significantly hinder their development and application. Here, we propose a solvation-interface attenuation strategy enabled by a frustrated tertiary amine amphiphilic dipolymer electrolyte additive. The configuration of superhydrophilic segments with covalently bonded lipophilic spacers enables coupled steric hindrance/coordination, which establishes a balanced push-pull dynamic of dipolymer-H2O-Zn2+. Such interplay reconstructs the solvation structure of Zn2+ and allows the formation of a stable dipolymer-inorganic hybrid solid electrolyte interface (SEI) layer. This SEI layer effectively shields the zinc-metal anode from water and anions, significantly reducing side reactions. In addition, the dipolymer adsorbed at the zinc-metal anode interface regulates the interfacial electrochemical reduction kinetics and ensures uniform zinc deposition. As a result, the Zn-Zn symmetric cells with dipolymer-containing electrolyte exhibit remarkable cycling stability exceeding 5800 h (242 days). The Zn-NVO batteries and Zn-AC hybrid ion supercapacitors also deliver stable cycling for up to 1440 h (60 days) with high-capacity retention over 80 %. This research demonstrates the potential to facilitate the development and commercialization of zinc-based energy storage devices.
Collapse
Affiliation(s)
- Die Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Xinyu Ma
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Pan Du
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Zuo Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Qiurui Lin
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Yuhan Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Ben Niu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xianru He
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
11
|
Lu Z, Li J, An J, Zeng X, Lan J, Yu Y, Yang X. Pre-oxidized and composite strategy greatly boosts performance of polyacrylonitrile/LLZO nanofibers for lithium-metal batteries. J Colloid Interface Sci 2024; 664:882-892. [PMID: 38493653 DOI: 10.1016/j.jcis.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The active cyano-group in polyacrylonitrile has severe passivation of lithium anode under larger current density, which restricts the wide application of polyacrylonitrile(PAN) in lithium metal batteries. Herein, in order to address the excessive passivation of lithium metal by PAN, inspired by the pre-oxidation of carbon fibers, PAN was pre-oxidized at 230 °C, which transformed part of the cyano group into a more chemically stable cyclized structure. The electrochemical and mechanical properties of the composite solid electrolyte were effectively improved by introducing the fast ionic conductor Li6.25La3Zr2Al0.25O12 into PAN by electrospinning. The oxidized PAN-based composite solid electrolyte presents high ionic conductivity (3.05 × 10-3 S·cm-1) and high lithium transference number of 0.79 at 25 °C, further contributing to a high electrochemical window (5.3 V). The solid-state batteries assembled by Li||10 wt%-LLZAO@230-oxy-PAN||NCM523 behave superb electrochemical performance, delivering a high initial discharge capacity of 157 mAh g-1 at 0.2 C. After 100 cycles, the capacity retention was 93.3 %, indicating the electrolyte displays great electrochemical stability. This work provides new insights into the structural design of polymer-based high-voltage batteries.
Collapse
Affiliation(s)
- Zhiqi Lu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Ji Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Jiaqi An
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Xiaoyue Zeng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China.
| | - Yunhua Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China; Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, PR China
| |
Collapse
|
12
|
Liu S, Jiang G, Wang Y, Liu C, Zhang T, Wei Y, An B. Vitrified Metal-Organic Framework Composite Electrolyte Enabling Dendrite-Free and Long-Lifespan Solid-State Lithium Metal Batteries. ACS NANO 2024; 18:14907-14916. [PMID: 38807284 DOI: 10.1021/acsnano.3c11725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Solid-state lithium metal batteries (LMBs) are still plagued with low ionic conductivity and inferior interfacial contact, which hinder their practical implementation. Herein, a quasi-solid-state composite electrolyte, poly(1,3-dioxolane) (PDOL)/glassy ZIF-62 (PGZ) with fast ion transport and intimate interface contact, is fabricated via in situ polymerization. The in situ polymerization of DOL in an electrolyte matrix not only improves the exterior interface between electrolyte/electrode but also optimizes the inner interfaces among glassy particles, rendering PGZ as an uninterrupted ionic conductor. Moreover, PGZ inherits the superior ionic conductivity and the robust dendrite prohibition of glassy MOFs originating from their grain-boundary-free nature, isotropy, and abundant groups containing N species. As expected, our proposed PGZ exhibits a prominent ionic conductivity of 6.3 × 10-4 S cm-1 at 20 °C. Li|PGZ|LiFePO4 delivers an outstanding rate performance (103 mAh g-1 at 4C) and a stable cycling capacity (118 mAh g-1 at 1C over 1000 cycles). PGZ also presents excellent low-temperature cycling performance with 75 mAh g-1 for 480 cycles at -20 °C and excellent flame retardance. Even at a high loading of 12.1 mg cm-2, it can still discharge at 140 mAh g-1 for 100 cycles. Hence, PGZ prepared via in situ polymerization holds enormous prospects as a solid-state electrolyte for high-performance and safe LMBs.
Collapse
Affiliation(s)
- Shouxiang Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Guangshen Jiang
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, China
| | - Yimao Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Chengyang Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Tongyang Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Yanyan Wei
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Baigang An
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, China
| |
Collapse
|
13
|
Yang X, Fang L, Li J, Liu C, Zhong L, Yang F, Wang X, Zhang Z, Yu D. Multipolar Conjugated Polymer Framework Derived Ionic Sieves via Electronic Modulation for Long-Life All-Solid-State Li Batteries. Angew Chem Int Ed Engl 2024; 63:e202401957. [PMID: 38526332 DOI: 10.1002/anie.202401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Here, we build a tunable multipolar conjugated polymer framework platform via pore wall chemistry to probe the role of electronic structure engineering in improving the Li+ conduction by theoretical studies. Guided by theoretical prediction, we develop a new cyano-vinylene-linked multipolar polymer framework namely CNF-COF, which can act as efficient ion sieves to modify solid polymer electrolytes to simultaneously tune Li+ migration and stable Li anodes for long-lifespan all-solid-state (ASS) Li metal batteries at high rate. The dual-decoration of cyano and fluorine groups in CNF-COF favorably regulates electronic structure via multipolar donor-acceptor electronic effects to afford proper energy band structure and abundant electron-rich sites for enhanced oxidative stability, facilitated ion-pair dissociation and suppressed anion movements. Thus, the CNF-COF incorporation into poly (ethylene oxide) (PEO) electrolytes not only renders fast selective Li+ transport but also facilitates the Li dendrite suppression. Specifically, the constructed PEO composite electrolyte with an ultra-low CNF-COF content of only 0.5 wt % is endowed with a wide electrochemical window, a high ionic conductivity of 0.634 mS cm-1 at 60 °C and a large Li+ transference number of 0.81-remarkably outperforming CNF-COF-free counterparts (0.183 mS cm-1 and 0.22). As such, the Li symmetric cell delivers stable Li plating/stripping over 1400 h at 0.1 mA cm-2. Impressively, by coupling with LiFePO4 (LFP) cathodes, the assembled ASS Li battery under 60 °C allows for stable cycling over 2000 cycles at 1 C and over 1000 cycles even at 2 C with a large capacity retention of ~75 %, surpassing most reported ASS Li batteries using PEO-based electrolytes.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Li
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zishou Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Han W, Li G, Zhang J. Diversifying Ion-Transport Pathways of Composite Solid Electrolytes for High-Performance Solid-State Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27280-27290. [PMID: 38743801 DOI: 10.1021/acsami.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The application of composite solid electrolytes (CSEs) in solid-state lithium-metal batteries is limited by the unsatisfactory ionic conductivity underpinned by the low concentration of free lithium ions. Herein, we propose an interface design strategy where an amine silane linker is employed as a coupling agent to graft the Li7La3Zr2O12 (LLZO) ceramic nanofibers to the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer matrix to enhance their interaction. The hydrogen bonding between amino-functionalized LLZO (NH2@LLZO) and PVDF-HFP not only effectively induces a uniform incorporation of high-content nanofibers (50 wt %) into the polymer matrix but also furnishes sufficient continuous surfaces to weaken the complexation between PVDF-HFP and Li-ion carriers. Additionally, introduction of the hydrogen bond and Lewis acid-base interplay strengthens the interfacial interactions between NH2@LLZO and lithium salts that release more free lithium ions for efficient interfacial transport. The impact of the linker's structure on the dissociation capacity of lithium salts is systematically studied from the steric effect perspective, which affords insights into interface design. Conclusively, the composite solid electrolyte achieves a high ionic conductivity (5.8 × 10-4 S cm-1) by synergy of multiple transport channels at ceramic, polymer, and their interface, which effectively regulates the lithium deposition behavior in symmetric cells. The excellent compatibility of the electrolyte with both LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes also results in a long lifetime and a high rate capability for full cells.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jingjing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Liang W, Zhou X, Zhang B, Zhao Z, Song X, Chen K, Wang L, Ma Z, Liu J. The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte with Enhanced Charge Transfer for LiF-Rich SEI Generation in Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202320149. [PMID: 38430213 DOI: 10.1002/anie.202320149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
The solid-state electrolyte interface (SEI) between the solid-state polymer electrolyte and the lithium metal anode dramatically affects the overall battery performance. Increasing the content of lithium fluoride (LiF) in SEI can help the uniform deposition of lithium and inhibit the growth of lithium dendrites, thus improving the cycle stability performance of lithium batteries. Currently, most methods of constructing LiF SEI involve decomposing the lithium salt by the polar groups of the filler. However, there is a lack of research reports on how to affect the SEI layer of Li-ion batteries by increasing the charge transfer number. In this study, a porous organic polymer with "charge storage" properties was prepared and doped into a polymer composite solid electrolyte to study the effect of sufficient charge transfer on the decomposition of lithium salts. The results show in contrast to porphyrins, the unique structure of POF allows for charge transfer between each individual porphyrin. Therefore, during TFSI- decomposition to the formation of LiF, TFSI- can obtain sufficient charge, thereby promoting the break of C-F and forming the LiF-rich SEI. Compared with single porphyrin (0.423 e-), POF provides 2.7 times more charge transfer to LiTFSI (1.147 e-). The experimental results show that Li//Li symmetric batteries equipped with PEO-POF can be operated stably for more than 2700 h at 60 °C. Even the Li//Li (45 μm) symmetric cells are stable for more than 1100 h at 0.1 mA cm-1. In addition, LiFePO4//PEO-POF//Li batteries have excellent cycling performance at 2 C (80 % capacity retention after 750 cycles). Even LiFePO4//PEO-POF//Li (45 μm) cells have excellent cycling performance at 1 C (96 % capacity retention after 300 cycles). Even when the PEO-base is replaced with a PEG-base and a PVDF-base, the performance of the cell is still significantly improved. Therefore, we believe that the concept of charge transfer offers a novel perspective for the preparation of high-performance assemblies.
Collapse
Affiliation(s)
- Weizhong Liang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Xuanyi Zhou
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Biao Zhang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Zishao Zhao
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Xin Song
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ke Chen
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Li Wang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Zengsheng Ma
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
16
|
Ma S, Zhang D, Tang Z, Li W, Zhang Y, Zhang Y, Ji K, Chen M. In Situ Polymerized Quasi-Solid Electrolytes Compounded with Ionic Liquid Empowering Long-Life Cycling of 4.45 V Lithium-Metal Battery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38600661 DOI: 10.1021/acsami.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
High-voltage resistant quasi-solid-state polymer electrolytes (QSPEs) are promising for enhancing the energy density of lithium-metal batteries in practice. However, side reactions occurring at the interfaces between the anodes or cathodes and QSPEs considerably reduce the lifespan of high-voltage LMBs. In this study, a copolymer of vinyl ethylene carbonate (VEC) and poly(ethylene glycol) diacrylate (PEGDA) was used as the framework, with a cellulose membrane (CE) as the supporting layer. Based on density functional theory calculations, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), an ionic liquid, was screened because of its lowest unoccupied molecular orbital energy level as a modifying agent for the in situ P(VECx-EGy)/Pyrz/LiTFSI@CE QSPEs synthesis. Pyr14+, with a lithiophobic alkyl chain, forms a dense positive ion shielding layer on the protruding tips of deposited lithium, facilitating uniform and smooth lithium deposition. Pyr14TFSI assists in constructing a stable solid electrolyte interphase (SEI) layer on the Li surface enriched with LiF, Li3N, and RCOOLi. The modulation of lithium deposition behavior on the anode by Pyr14TFSI ensures stable Li plating/stripping for >1500 h. A Li-Cu cell exhibits stable cycling for >200 cycles at a current density of 0.05 mA cm-2, with an average Coulombic efficiency of 92.7%. In situ polymerization ensures that P(VECx-EGy)/Pyrz/LiTFSI@CE QSPEs exhibit excellent interface compatibility with the anode and the cathode. The CR2032 button cell Li|P(VEC1-EG0.06)/Pyr0.4/LiTFSI@CE|LiCoO2 demonstrates stable cycling with a negligible capacity decay of 0.083% per cycle for >390 cycles at 25 °C and 0.2 C when using a high-voltage LiCoO2 (4.45 V) cathode. Furthermore, a 7.1 mAh pouch cell achieves stable charge-discharge cycles, confirming the pronounced stability of the as-fabricated QSPE at the interfaces of the high-voltage LiCoO2 cathode and Li anode.
Collapse
Affiliation(s)
- Shuo Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Donghui Zhang
- The Research Center of Chemical Engineering, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Zhongli Tang
- The Research Center of Chemical Engineering, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Wenbin Li
- The Research Center of Chemical Engineering, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Yanan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Yating Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Kemeng Ji
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Mingming Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| |
Collapse
|
17
|
Sun Y, Li J, Xu S, Zhou H, Guo S. Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311687. [PMID: 38081135 DOI: 10.1002/adma.202311687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lithium-metal batteries (LMBs) with high energy density are becoming increasingly important in global sustainability initiatives. However, uncontrollable dendrite seeds, inscrutable interfacial chemistry, and repetitively formed solid electrolyte interphase (SEI) have severely hindered the advancement of LMBs. Organic molecules have been ingeniously engineered to construct targeted SEI and effectively minimize the above issues. In this review, multiple organic molecules, including polymer, fluorinated molecules, and organosulfur, are comprehensively summarized and insights into how to construct the corresponding elastic, fluorine-rich, and organosulfur-containing SEIs are provided. A variety of meticulously selected cases are analyzed in depth to support the arguments of molecular design in SEI. Specifically, the evolution of organic molecules-derived SEI is discussed and corresponding design principles are proposed, which are beneficial in guiding researchers to understand and architect SEI based on organic molecules. This review provides a design guideline for constructing organic molecule-derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs.
Collapse
Affiliation(s)
- Yu Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jingchang Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Sheng Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| |
Collapse
|
18
|
Wu L, Lv H, Zhang R, Ding P, Tang M, Liu S, Wang L, Liu F, Guo X, Yu H. Ferroelectric BaTiO 3 Regulating the Local Electric Field for Interfacial Stability in Solid-State Lithium Metal Batteries. ACS NANO 2024. [PMID: 38314720 DOI: 10.1021/acsnano.3c10870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Solid-state Li metal batteries (SSLMBs) are widely investigated since they possess promising energy density and high safety. However, the poor interfacial compatibility between the electrolyte and electrodes limits their promising development. Herein, a robust composite electrolyte (poly(vinyl ethylene carbonate) electrolyte with 3 wt % of BaTiO3, PVEC-3BTO) with excellent interfacial performance is rationally designed by incorporating ferroelectric BaTiO3 (BTO) nanoparticles into the poly(vinyl ethylene carbonate) (PVEC) electrolyte matrix. Benefiting from the high dielectric constant and ferroelectric properties of BTO, the interfacial compatibility between electrolytes and electrodes was significantly improved. The enhanced Li+ transference number (0.64) of solid electrolyte and in situ generated BaF2 inorganic interphase contribute to the enhanced cycling stability of PVEC-3BTO based Li//Li symmetrical batteries. Furthermore, the antioxidation ability of PVEC-3BTO has also been enhanced by modulating the local electric field for good pairing with high-voltage LiCoO2 material. Therefore, in this work, the mechanism of BTO for improving interfacial compatibility is revealed, and also useful methods for addressing the interface issues of SSLMBs have been provided.
Collapse
Affiliation(s)
- Lingqiao Wu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haoran Lv
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rui Zhang
- Beijing Huairou Laboratory, Beijing, 101400, P. R. China
| | - Peipei Ding
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing 100094, P. R. China
| | - Shiqi Liu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lihang Wang
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Fangzheng Liu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xianwei Guo
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haijun Yu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|