1
|
Lin C, Wang H, Chen K, Liu S, Mao Z, Mo Z, Huang R, Zhang Y, Xie W, Wei J, Jin J. A Cyclometalated Iridium(III) Complex Exerts High Anticancer Efficacy via Fatty Acid Beta-Oxidation Inhibition and Sphingolipid Metabolism Reprogramming. J Med Chem 2024; 67:14912-14926. [PMID: 39226239 DOI: 10.1021/acs.jmedchem.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Given the extensive role of lipids in cancer development, there is substantial clinical interest in developing therapies that target lipid metabolism. In this study, we identified one cyclometalated iridium complex (Ir2) that exhibits potent antiproliferation activity in MIA PaCa-2 cells by regulating fatty acid metabolism and sphingolipid metabolism simultaneously. Ir2 also efficiently overcomes cisplatin resistance in vitro. Satisfyingly, the generated Ir2@F127 carriers, as a temperature-sensitive in situ gelling system of Ir2, showed effective cancer treatment with minimal side effects in an in vivo xenograft study. To the best of our knowledge, Ir2 is the first reported cyclometalated iridium complex that exerts anticancer activity in MIA PaCa-2 cells by intervening in lipid metabolism, which provides an alternative pathway for the anticancer mechanism of cyclometalated iridium complexes.
Collapse
Affiliation(s)
- Cuiyan Lin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Huiling Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Keyu Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shuangqiang Liu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zhichen Mao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zuyu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jianhua Wei
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi 541001, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| |
Collapse
|
2
|
Zeng YL, Liu LY, Ma TZ, Liu Y, Liu B, Liu W, Shen QH, Wu C, Mao ZW. Iridium(III) Photosensitizers Induce Simultaneous Pyroptosis and Ferroptosis for Multi-Network Synergistic Tumor Immunotherapy. Angew Chem Int Ed Engl 2024:e202410803. [PMID: 39180126 DOI: 10.1002/anie.202410803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Abstract
The integration of pyroptosis and ferroptosis hybrid cell death induction to augment immune activation represents a promising avenue for anti-tumor treatment, but there is a lack of research. Herein, we developed two iridium (III)-triphenylamine photosensitizers, IrC and IrF, with the capacity to disrupt redox balance and induce photo-driven cascade damage to DNA and Kelch-like ECH-associated protein 1 (KEAP1). The activation of the absent in melanoma 2 (AIM2)-related cytoplasmic nucleic acid-sensing pathway, triggered by damaged DNA, leads to the induction of gasdermin D (GSDMD)-mediated pyroptosis. Simultaneously, iron homeostasis, regulated by the KEAP1/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) pathway, serves as a pivotal bridge, facilitating not only the induction of gasdermin E (GSDME)-mediated non-canonical pyroptosis, but also ferroptosis in synergy with glutathione peroxidase 4 (GPX4) depletion. The collaborative action of pyroptosis and ferroptosis generates a synergistic effect that elicits immunogenic cell death, stimulates a robust immune response and effectively inhibits tumor growth in vivo. Our work introduces the first metal-based small molecule dual-inducers of pyroptosis and ferroptosis for potent cancer immunotherapy, and highlights the significance of iron homeostasis as a vital hub connecting synergistic effects of pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Liu X, Li Z, Zhao Q, Zhou X, Wang Y, Zhao G, Guo X. Capsaicin reverses cisplatin resistance in tongue squamous cell carcinoma by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis. Cell Biol Int 2024; 48:1097-1110. [PMID: 38706122 DOI: 10.1002/cbin.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/12/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Cisplatin is commonly used for the chemotherapy of tongue squamous cell carcinoma (TSCC); however, adverse side effects and drug resistance impact its therapeutic efficacy. Capsaicin is an active ingredient in chili peppers that exerts antitumor effects, whether it exerts antitumor effects on cisplatin-resistant cells remains unknown. Therefore, in this study, we investigated the effect of capsaicin on cisplatin resistance in TSCC cells and explored the underlying mechanisms. A cisplatin-resistant TSCC cell line was established by treated with increasing cisplatin concentrations. Combined treatment with cisplatin and capsaicin decreased the glucose consumption and lactate dehydrogenase activity and increased the adenosine triphosphate production both in vitro and in vivo, suggesting the inhibition of the Warburg effect. Moreover, this combined treatment induced cell apoptosis and significantly upregulated the levels of proapoptotic proteins, such as Bax, cleaved caspase-3, -7, and -9, and apoptosis-inducing factor. In contrast, levels of the antiapoptotic protein, Bcl-2, were downregulated. Additionally, LKB1 and AMPK activities were stimulated, whereas those of AKT and mTOR were suppressed. Notably, AMPK knockdown abolished the inhibitory effects of capsaicin and cisplatin on the AKT/mTOR signaling pathway and Warburg effect. Overall, combined treatment with capsaicin and cisplatin reversed cisplatin resistance by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis. Our findings suggest combination therapy with capsaicin and cisplatin as a potentially novel strategy and highlight capsaicin as a promising adjuvant drug for TSCC treatment.
Collapse
Affiliation(s)
- Xiayang Liu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Zhuang Li
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Qiwei Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Xinyue Zhou
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yu Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Gang Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaohong Guo
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| |
Collapse
|
4
|
Feng T, Tang Z, Shu J, Wu X, Jiang H, Chen Z, Chen Y, Ji L, Chao H. A Cyclometalated Ruthenium(II) Complex Induces Oncosis for Synergistic Activation of Innate and Adaptive Immunity. Angew Chem Int Ed Engl 2024; 63:e202405679. [PMID: 38771671 DOI: 10.1002/anie.202405679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
An optimal cancer chemotherapy regimen should effectively address the drug resistance of tumors while eliciting antitumor-immune responses. Research has shown that non-apoptotic cell death, such as pyroptosis and ferroptosis, can enhance the immune response. Despite this, there has been limited investigation and reporting on the mechanisms of oncosis and its correlation with immune response. Herein, we designed and synthesized a Ru(II) complex that targeted the nucleus and mitochondria to induce cell oncosis. Briefly, the Ru(II) complex disrupts the nucleus and mitochondria DNA, which active polyADP-ribose polymerase 1, accompanied by ATP consumption and porimin activation. Concurrently, mitochondrial damage and endoplasmic reticulum stress result in the release of Ca2+ ions and increased expression of Calpain 1. Subsequently, specific pore proteins porimin and Calpain 1 promote cristae destruction or vacuolation, ultimately leading to cell membrane rupture. The analysis of RNA sequencing demonstrates that the Ru(II) complex can initiate the oncosis-associated pathway and activate both innate and adaptive immunity. In vivo experiments have confirmed that oncosis promotes dendritic cell maturation and awakens adaptive cytotoxic T lymphocytes but also activates the innate immune by inducing the polarization of macrophages towards an M1 phenotype.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Shu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
5
|
Huang X, Li G, Li H, Zhong W, Jiang G, Cai J, Xiong Q, Wu C, Su K, Huang R, Xu S, Liu Z, Wang M, Wang H. Glycyrrhetinic Acid as a Hepatocyte Targeting Ligand-Functionalized Platinum(IV) Complexes for Hepatocellular Carcinoma Therapy and Overcoming Multidrug Resistance. J Med Chem 2024; 67:8020-8042. [PMID: 38727048 DOI: 10.1021/acs.jmedchem.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.
Collapse
Affiliation(s)
- Xiaochao Huang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Huifang Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Wentian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guiyang Jiang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chuang Wu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kangning Su
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shiliu Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhikun Liu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Meng Wang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
6
|
Song XQ, Guo X, Ding YX, Han YX, You ZH, Song Y, Yuan Y, Li L. Gemfibrozil-Platinum(IV) Precursors for New Enhanced-Starvation and Chemotherapy In Vitro and In Vivo. J Med Chem 2024; 67:7033-7047. [PMID: 38634331 DOI: 10.1021/acs.jmedchem.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.
Collapse
Affiliation(s)
- Xue-Qing Song
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xu Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yi-Xin Ding
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yi-Xuan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Zhi-Hao You
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yali Song
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yanan Yuan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
7
|
Wei T, Chen L, Shi P, Wang C, Peng Y, Yang J, Liao X, Yang B, Gao C. Platinum (IV) drugs with cannabidiol inducing mitochondrial dysfunction and synergistically enhancing anti-tumor effects. J Inorg Biochem 2024; 254:112515. [PMID: 38490045 DOI: 10.1016/j.jinorgbio.2024.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy resistance is an insurmountable problem in clinical anticancer therapy. Although Oxaliplatin is an effective chemotherapeutic agent for the treatment of colorectal cancer (CRC), it still suffers from serious toxicities as well as drug resistance. In this work, three Oxaliplatin tetravalent platinum prodrugs(O1-O3) and three novel mixed ammine/amine analogs(C1-C3) were constructed, introducing cannabidiol with anti-tumor activity in their axial position. All Pt(IV) prodrugs exhibited potent antitumor effects in a variety of tumor cell lines, especially in HCT-116 cells, where complex O3 showed strong inhibitory effects with the half maximal inhibitory concentrations (IC50) value of 6.02 ± 0.69 μM and about 2.6 times higher than that of Oxaliplatin. Further studies revealed that complex O3 decreased cellular mitochondrial membrane potential in a concentration-dependent manner and enhanced reactive oxygen species (ROS) accumulation by decreasing the expression of catalase, superoxide dismutase 2 (SOD2) and superoxide dismutase 3 (SOD3). Complex O3 induces mitochondrial dysfunction and upregulates the pro-apoptotic protein Noxa, ultimately leading to severe DNA damage. The upregulation of Phosphorylated histone protein H2AX (γ-H2AX) expression is clear evidence. In addition, O3 inhibits the expression of RAD51 protein and prevents DNA damage repair, thus overcoming drug resistance. This strategy of combining bioactive molecules cannabidiol with platinum drugs to improve therapeutic efficacy and overcome drug resistance has been proven to be very effective and deserves further investigation.
Collapse
Affiliation(s)
- Tangli Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Lihua Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Pengmin Shi
- Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Changli Wang
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yusheng Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
8
|
Alves MG, Cabral LGS, Totti PGF, Azarias FR, Pomini KT, Rici REG, Laiso RAN, Maria DA. 2-Aminoethyl Dihydrogen Phosphate (2-AEH2P) Associated with Cell Metabolism-Modulating Drugs Presents a Synergistic and Pro-Apoptotic Effect in an In Vitro Model of the Ascitic Ehrlich Tumor. Biomedicines 2024; 12:109. [PMID: 38255214 PMCID: PMC10813795 DOI: 10.3390/biomedicines12010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The progression and maintenance of cancer characteristics are associated with cellular components linked to the tumor and non-cellular components with pro-tumoral properties. Pharmacological association with antagonists of the cellular components of the tumor, such as anti- and pro-apoptotic drugs, represents a novel adjuvant strategy. In this study, the antiproliferative, pro-apoptotic, and pharmacological effects of the combination of monophosphoester 2-AEH2P with Simvastatin, Coenzyme Q10, the chemotherapeutic drug paclitaxel, and colony-stimulating factor (GM-CSF) were evaluated. Tests were conducted to determine cytotoxic activity using the MTT method, cell cycle phases, and fragmented DNA by flow cytometry, mitochondrial membrane potential, expression of cell markers Bcl2, TNF-α/DR-4, Cytochrome c, caspase 3, and P53, and analysis of drug combination profiles using Synergy Finder 2.0 Software. The results showed a synergistic effect among the combinations, compared to individual treatments with the monophosphoester and other drugs. In addition, there was modulation of marker expression, indicating a pro-apoptotic and immunomodulatory effect of 2-AEH2P. Pharmacological analysis revealed that tumor cells treated with GM-CSF + 2-AEH2P exhibited a synergistic effect, while groups of tumor cells treated with paclitaxel, Coenzyme Q10, and Simvastatin showed additive effects. Furthermore, treatment with the paclitaxel + 2-AEH2P combination (12 h) resulted in a significant reduction in mitochondrial membrane potential. Pharmacological combinations for normal cells did not exhibit deleterious effects compared to mammary carcinomatosis tumor (EAT) cells.
Collapse
Affiliation(s)
- Monique G. Alves
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
- Graduate Program in Medical Sciences, College of Medicine, University of São Paulo, São Paulo 05508-220, Brazil
| | - Laertty G. S. Cabral
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
- Graduate Program in Medical Sciences, College of Medicine, University of São Paulo, São Paulo 05508-220, Brazil
| | - Paulo G. F. Totti
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil (R.E.G.R.)
| | - Felipe R. Azarias
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
| | - Karine T. Pomini
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil (R.E.G.R.)
| | - Rose E. G. Rici
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil (R.E.G.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, Brazil
| | - Rosa A. N. Laiso
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
| | - Durvanei A. Maria
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05359-900, Brazil; (L.G.S.C.); (F.R.A.)
- Graduate Program in Medical Sciences, College of Medicine, University of São Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|