1
|
Karafyllia C, Kessler J, Hudecová J, Kapitán J, Bouř P. Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125648. [PMID: 39736189 DOI: 10.1016/j.saa.2024.125648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed. A combined molecular mechanics/quantum mechanics approach was taken to reveal how relative Raman scattering intensities depend on the distance from the solute and the excitation wavelength. The computations indicate a big effect of solute charge; for example, the sodium cation affects Raman scattering by water to a lesser extent than the chlorine anion. The modeling was able to qualitatively reproduce the experimental observation that a solution of a simple salt may work as a baseline better than pure water in many Raman experiments. For absorbing species, an additional scattering boost occurs due to the resonance effect. Simulations thus provide useful insight into solute-solvent interactions and their effects on measured spectra.
Collapse
Affiliation(s)
- Christina Karafyllia
- Faculty of Sciences, Aristotle University of Thessaloniki, University Campus 54124, Thessaloniki, Greece; Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Jana Hudecová
- Department of Optics, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
2
|
Machalska E, Halat M, Tani T, Fujisawa T, Unno M, Kudelski A, Baranska M, Zając G. Why Does One Measure Resonance Raman Optical Activity? A Unique Case of Measurements under Strong Resonance versus Far-from-Resonance Conditions. J Phys Chem Lett 2024; 15:4913-4919. [PMID: 38684076 PMCID: PMC11089565 DOI: 10.1021/acs.jpclett.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Raman optical activity (ROA) spectroscopy exhibits significant potential in the study of (bio)molecules as it encodes information on their molecular structure, chirality, and conformations. Furthermore, the method reveals details on excited electronic states when applied under resonance conditions. Here, we present a combined study of the far from resonance (FFR)-ROA and resonance ROA (RROA) of a single relatively small molecular system. Notably, this study is the first to employ the density functional theory (DFT) analysis of both FFR-ROA and RROA spectra. This is illustrated for cobalamin derivatives using near-infrared and visible light excitation. Although the commonly observed monosignate RROA spectra lose additional information visible in bisignate nonresonance ROA spectra, the RROA technique acts as a complement to nonresonance ROA spectroscopy. In particular, the combination of these methods integrated with DFT calculations can reveal a complete spectral picture of the structural and conformational differences between tested compounds.
Collapse
Affiliation(s)
- Ewa Machalska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Laboratory
for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Monika Halat
- Department
of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Takumi Tani
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Andrzej Kudelski
- Faculty of
Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Malgorzata Baranska
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Faculty of
Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
3
|
Hao Z, Fu S, Liu H, Zhao H, Gu C, Jiang T. Biomimetic SERS substrate with silicon-mediated internal standard: Improved sensing of environmental pollutants and nutrients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123805. [PMID: 38154300 DOI: 10.1016/j.saa.2023.123805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Biomimetic materials with fascinating natural micro-nano surface structures offer a good choice for the simple fabrication of surface-enhanced Raman scattering (SERS) substrate. This study presented a novel sodium carboxymethylcellulose (NaCMC)-Ag biomimetic substrate which was fabricated through the reverse replication of micro-nano structures from cantaloupe peel. Particularly, silicon nanoparticles (Si NPs) were doped into this flexible biomimetic substrate in its fabrication process. Abundant electromagnetic "hotspots" could be effectively excited in this Ag densely covered matrix which maintained numerous protrusions as well as vertical and horizontal grooves. Specifically, the doped Si NPs exhibited a robust intrinsic Raman peak, which could be employed as an internal standard to calibrate the target signal. In this regard, the biomimetic substrate with the optimal electromagnetic enhancement and the quantitative calibration capabilities exhibited a high enhancement factor and a remedied linear relationship in the detection. After a perfect uniformity of signal was proved by the corrected SERS mapping, the biomimetic SERS substrate was finally utilized in the practical analysis of methylene blue (MB) and β-carotene with ultra-low limit of detection, highlighting its importance in practical detection scenarios.
Collapse
Affiliation(s)
- Zidong Hao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Shijiao Fu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Huan Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Hengwei Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|