1
|
Xue Z, Hu Y, Xiao S, Liu J, Miao J, Yang C. Cyano-Modified Multi-Resonance Thermally Activated Delayed Fluorescent Emitters Towards Pure-Green OLEDs with a CIE y Value of 0.74. Angew Chem Int Ed Engl 2025:e202500108. [PMID: 39869485 DOI: 10.1002/anie.202500108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
The development of pure-green organic emitters with ideal emission peaks and ultra-narrow full-widths at half-maximum (FWHMs) remains a formidable challenge. Herein, we report two new green emitters, CNBN and MCNBN, which achieve extremely narrow FWHMs by synergistic rigid π-extension and cyano-substitution of a sky-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) core. The introduction of cyano groups induces red-shifts in the emission to the green region and dramatically minimizes the FWHMs. In toluene solution, CNBN and MCNBN exhibit narrowband emission with a maximum at 501 nm and 510 nm with ultra-narrow FWHMs of 14 nm/0.066 eV and 15 nm/0.071 eV, respectively. Given the near-unity photoluminescence quantum yields and almost 100 % horizontal dipole orientation, the electroluminescent (EL) devices based on CNBN and MCNBN deliver external quantum efficiencies (EQEs) exceeding 30 % with FWHMs of 16 nm/0.072 eV and 17 nm/0.080 eV, respectively. Notably, the MCNBN-based device achieves pure-green emission with a maximum at 517 nm with Commission Internationale de l'Éclairage coordinates of (0.17, 0.74), closely aligning with the BT.2020 green standard.
Collapse
Affiliation(s)
- Zhuixing Xue
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shengbing Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
2
|
Chen H, Du M, Qu C, Jin Q, Tao Z, Ji R, Zhao G, Zhou T, Lou Y, Sun Y, Jiang W, Duan L, Zhang Y. Clar's Aromatic π-Sextet Rule for the Construction of Red Multiple Resonance Emitter. Angew Chem Int Ed Engl 2025; 64:e202415400. [PMID: 39258563 DOI: 10.1002/anie.202415400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
Despite the proliferation of multiple resonance (MR) materials in the blue to green spectral ranges, red MR emitters remain scarce in the literature, an area that certainly warrants attention for future applications. Here, through a clever application of classic Clar's aromatic π-sextet rule, we triumphantly constructed the first red MR emitter by substituting the conventional benzene ring core with anthracene (fewer π-sextets). Theoretical studies indicate that the quantity of π-sextets ultimately determines the optical band gap of a molecule, rather than the number of fused benzene rings. Benefiting from the high photoluminescence quantum yield of ~94 % and horizontal dipole ratio of ~90 %, the corresponding narrowband red (luminescence wavelength: 608 nm) organic light-emitting diode shows a high external quantum efficiency of 27.3 %, with only a slight decrease of 3.7 % at an elevated luminance level of 100,000 cd/m2.
Collapse
Affiliation(s)
- Haowen Chen
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng Qu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qian Jin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zequan Tao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Renjie Ji
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Guimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Tao Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yuheng Lou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yueming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Feng T, Nie X, Liu D, Wu L, Liu CY, Mu X, Xin Z, Liu B, Qi H, Zhang J, Li W, Su SJ, Ge Z. Multiple Resonance Quasi-fluorescence from BN-Doped Aromatic Compounds Modified with "Naphthalene" Units Approaches the BT.2020 Green Light Standard. Angew Chem Int Ed Engl 2025; 64:e202415113. [PMID: 39297652 DOI: 10.1002/anie.202415113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 11/06/2024]
Abstract
Developing fluorophores that conform to the Broadcast Service Television 2020 (BT.2020) standard presents a formidable challenge. Here, we propose an innovative approach that integrates two and three-boron/nitrogen (BN2)-embedded [4]helicene subunits with naphthalene, resulting in the synthesis of two novel narrowband bright green quasi-fluorescent emitters, NT-2B and NT-3B for ultra-high-definition displays. These emitters exhibit minimal reorganization energy and Huang-Rhys factor, emitting at 510 and 511 nm in dilute toluene solution with exceptionally narrow full width at half maximum values of 15 and 14 nm, respectively. Notably, NT-2B demonstrates an impressive photoluminescence quantum yield of 92.5 %, rapid radiative decay rate, and slow non-radiative decay rate. Owing to their narrowband emission characteristics and outstanding optoelectronic properties, corresponding OLEDs based on NT-2B demonstrate a high external quantum efficiency of 30.6 %, with an FWHM value of 21.5 nm and a CIEy of 0.74, positioning it as one of the leading narrow-band green emitters.
Collapse
Affiliation(s)
- Tingting Feng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Xuewei Nie
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Lin Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - C Y Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Xilin Mu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Ziru Xin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Bohong Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Hengxuan Qi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| |
Collapse
|
4
|
Pu Y, Jin Q, Zhang Y, Li C, Duan L, Wang Y. Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs. Nat Commun 2025; 16:332. [PMID: 39747239 PMCID: PMC11696159 DOI: 10.1038/s41467-024-55680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks. Endowed with the planar architectural feature of the MR mother core, the proof-of-concept S-embedded emitters S-BN and 2S-BN also exhibit considerable flatness, which proves critical in avoiding the direct establishment of potent charge transfer states and inhibiting the non-radiative decay process. The emission maxima of S-BN and 2S-BN are 594 nm and 671 nm, respectively, and both have a high photoluminescence quantum yield of ~100%, a rapid radiative decay rate of around 107 s-1, and a remarkably high reverse intersystem crossing rates of about 105 s-1. Notably, maximum external quantum efficiencies of 39.9% (S-BN, orange-red) and 29.3% (2S-BN, deep-red) were also achieved in typical planar OLED structures with ameliorated efficiency roll-offs.
Collapse
Affiliation(s)
- Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qian Jin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
- Applied Mechanics Lab, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
5
|
Liu J, Yin X, Huang M, Miao J, Li N, Huang Z, Yang C. High-Performance Narrowband Pure-Green OLEDs with Gamut Approaching BT.2020 Standard: Deuteration Promotes Device Efficiency and Lifetime Simultaneously. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411610. [PMID: 39588850 DOI: 10.1002/adma.202411610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
In order to fulfill the demand for ultrahigh definition organic light-emitting diodes (OLEDs), pure-green emitters with Commission Internationale de l'Éclairage (CIE) y-coordinate over 0.71 are in urgent demand. Meanwhile, the high device efficiency, small efficiency roll-off, and operational lifetime also remain challenging issues. In this work, a series of narrowband pure-green fluorescent emitters based on a double-boron (B) doped polycyclic aromatic hydrocarbons (PAHs) framework fused with naphthalene units is reported. The newly designed emitters realize green emission with peaks of 512-521 nm and extremely narrow full-width at half-maxima (FWHMs) of 16-17 nm in toluene solution. Utilizing these emitters in a phosphor-sensitized fluorescence (PSF) system, the resulting OLEDs exhibit pure green emission with peaks in the range of 514-526 nm and very narrow FWHMs of 19-20 nm. Notably, the devices based on the partially deuterated emitter, DBN-NaPh-d, not only achieve a maximum external quantum efficiency (EQEmax) as high as 35.2%, small efficiency roll-off, along with a CIEy of 0.74 but also showcase impressive operational stability with a long lifetime (LT50) of over 3000 h at an initial luminance of 1000 cd m-2. This work represents one of the highest device efficiencies and superior device stability among fluorescence emitter-based OLEDs.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Manli Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
6
|
Li C, Sun Y, Xue N, Guo Y, Jiang R, Wang Y, Liu Y, Jiang L, Liu X, Wang Z, Jiang W. BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2024:e202423002. [PMID: 39726333 DOI: 10.1002/anie.202423002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures. Micro-sized single-crystalline organic field-effect transistors (OFETs) demonstrated that an enhanced charge transport capability, with BCNL2 achieving a hole mobility of up to 0.62 cm2 V-1 s-1-three orders of magnitude higher than that of BCNL1 (μh max=6 × 10-4 cm2 V-1 s-1), ranking among the highest values for BN-PAHs-based OFETs. Detailed calculations attribute this significant enhancement in the hole mobility to the marked reduction in reorganization energy (λ) of BCNL2, resulting from the five-membered pyrrole ring annulation and molecular skeleton elongation. This work provides insight into molecular design principles for potential BN-PAHs in optoelectronic applications.
Collapse
Affiliation(s)
- Chenglong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yanan Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Ruijun Jiang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yuanhui Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
7
|
Zhang TY, Fan XC, Wang K, Zhang XH. Syntheses of multi-resonance frameworks towards narrowband organic light-emitting diodes. Chem Commun (Camb) 2024; 60:14168-14179. [PMID: 39541240 DOI: 10.1039/d4cc05040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Multi-resonance (MR)-type organic emitters are highly attractive in the field of organic light-emitting diodes because of their narrowband emission and thermally activated delayed fluorescence (TADF) properties. Compared with conventional TADF emitters, MR-featured emitters have more complex chemical structures and building logics. The core structures of MR emitters are MR frameworks, i.e., polyaromatic frameworks, precisely embedded with electron-donating and electron-withdrawing atoms/groups. Generally, electron-donating units can be easily introduced through the dedicated design of the precursors/intermediates, while integrating electron-withdrawing units is the key point and bottleneck for the synthesis of the MR framework. In this review, we briefly summarize the synthetic strategies of MR frameworks, focusing on the means of introducing various electron-withdrawing atoms/groups, which will aid the further exploration of MR-TADF emitters and their applications in OLEDs.
Collapse
Affiliation(s)
- Tong-Yuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
8
|
Wu X, Wang CH, Ni S, Wu CC, Lin YD, Qu HT, Wu ZH, Liu D, Yang MZ, Su SJ, Zhu W, Chen K, Jiang ZC, Yang SD, Hung WY, Chou PT. Multiple Enol-Keto Isomerization and Excited-State Unidirectional Intramolecular Proton Transfer Generate Intense, Narrowband Red OLEDs. J Am Chem Soc 2024; 146:24526-24536. [PMID: 39177295 PMCID: PMC11378290 DOI: 10.1021/jacs.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A novel series of excited-state intramolecular proton transfer (ESIPT) emitters, namely, DPNA, DPNA-F, and DPNA-tBu, endowed with dual intramolecular hydrogen bonds, were designed and synthesized. In the condensed phase, DPNAs exhibit unmatched absorption and emission spectral features, where the minor 0-0 absorption peak becomes a major one in the emission. Detailed spectroscopic and dynamic approaches conclude fast ground-state equilibrium among enol-enol (EE), enol-keto (EK), and keto-keto (KK) isomers. The equilibrium ratio can be fine-tuned by varying the substitutions in DPNAs. Independent of isomers and excitation wavelength, ultrafast ESIPT takes place for all DPNAs, giving solely KK tautomer emission maximized at >650 nm. The spectral temporal evolution of ESIPT was resolved by a state-of-the-art technique, namely, the transient grating photoluminescence (TGPL), where the rate of EK* → KK* is measured to be (157 fs)-1 for DPNA-tBu, while a stepwise process is resolved for EE* → EK* → KK*, with a rate of EE* → EK* of (72 fs)-1. For all DPNAs, the KK tautomer emission shows a narrowband emission with high photoluminescence quantum yields (PLQY, ∼62% for DPNA in toluene) in the red, offering advantages to fabricate deep-red organic light-emitting diodes (OLED). The resulting OLEDs give high external quantum efficiency with a spectral full width at half-maximum (FWHM) as narrow as ∼40 nm centered at 666-670 nm for DPNAs, fully satisfying the BT. 2020 standard. The unique ESIPT properties and highly intense tautomer emission with a small fwhm thus establish a benchmark for reaching red narrowband organic electroluminescence.
Collapse
Affiliation(s)
- Xiugang Wu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Songqian Ni
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Ting Qu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zong-Hsien Wu
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ming-Zhou Yang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Kai Chen
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Zi-Cheng Jiang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Yi Hung
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Liu H, Liu Y, Chen G, Meng Y, Peng H, Miao J, Yang C. Nonplanar structure accelerates reverse intersystem crossing of TADF emitters: nearly 40% EQE and relieved efficiency roll off. Chem Sci 2024; 15:12598-12605. [PMID: 39118617 PMCID: PMC11304530 DOI: 10.1039/d4sc03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC (k RISC). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96-98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, S2-TRZ exhibits an accelerated k RISC of 24.2 × 105 s-1 compared to the 11.1 × 105 s-1 of S1-TRZ, which solely incorporates heavy atoms. Additionally, O1-TRZ possesses a further lower k RISC of 9.42 × 105 s-1 because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A-1. More importantly, devices utilizing S2-TRZ as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m-2, in contrast to the 12% for O1-TRZ and 11% for S1-TRZ, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.
Collapse
Affiliation(s)
- He Liu
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Yang Liu
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Guohao Chen
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Yuan Meng
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Hao Peng
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Jingsheng Miao
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Chuluo Yang
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| |
Collapse
|
10
|
Li MY, Wu H, Fan XC, Huang F, Yu J, Wang K, Zhang XH. Expanding Multiple-Resonance Structure of a Double-Borylated Skeleton by Fusing with Indolocarbazole a Multiple-Resonance Donor for Narrowband Green Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312098. [PMID: 38461523 DOI: 10.1002/smll.202312098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Double-borylated multiple-resonance (MR) skeletons are promising templates for high performance, while the chemical design space is relatively limited. Peripheral segments are often used to decorate/fuse MR skeletons and modulate the photophysics but they can also cause unwanted spectral broadening. Herein, a narrowband MR emitter ICzDBA by fusing an MR-featured donor segment indolocarbazole into a double-borylated MR skeleton is developed. In ICzDBA, the nitrogen atom located away from the core benzene ring can also contribute to the generation of the overall MR-featured distribution through the long-range conjugation effect, along with the other boron/nitrogen atoms on the phenyl center. Thus, ICzDBA in toluene displays a narrowband emission peaking at 507 nm with a full width at half maximum of merely 20 nm (0.09 eV). Moreover, organic light-emitting diode devices using ICzDBA emitter exhibit ultrapure green emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.27, 0.70) and a high external quantum efficiency of 32.5%. These results manifest the importance of MR characters of peripheral decorations/fusions in preserving the narrowband features of MR skeletons, which provides a solution for further expanding MR structures with well-maintained narrowband characters.
Collapse
Affiliation(s)
- Mo-Yuan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
11
|
Liang L, Qu C, Fan X, Ye K, Zhang Y, Zhang Z, Duan L, Wang Y. Carbonyl- and Nitrogen-Embedded Multi-Resonance Emitter with Ultra-Pure Green Emission and High Electroluminescence Efficiencies. Angew Chem Int Ed Engl 2024; 63:e202316710. [PMID: 38061992 DOI: 10.1002/anie.202316710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11 eV (24 nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiangyu Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|