1
|
Penner M, Klein OJ, Gantz M, Nintzel FEH, Prowald AC, Boss S, Barker P, Dupree P, Hollfelder F. Fluorogenic, Subsingle-Turnover Monitoring of Enzymatic Reactions Involving NAD(P)H Provides a Generalized Platform for Directed Ultrahigh-Throughput Evolution of Biocatalysts in Microdroplets. J Am Chem Soc 2025; 147:10903-10915. [PMID: 40127491 PMCID: PMC11969528 DOI: 10.1021/jacs.4c11804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Enzyme engineering and discovery are crucial for a sustainable future bioeconomy. Harvesting new biocatalysts from large libraries through directed evolution or functional metagenomics requires accessible, rapid assays. Ultrahigh-throughput screening formats often require optical readouts, leading to the use of model substrates that may misreport target activity and necessitate bespoke synthesis. This is a particular challenge when screening glycosyl hydrolases, which leverage molecular recognition beyond the target glycosidic bond, so that complex chemical synthesis would have to be deployed to build a fluoro- or chromogenic substrate. In contrast, coupled assays represent a modular "plug-and-play" system: any enzyme-substrate pairing can be investigated, provided the reaction can produce a common intermediate which links the catalytic reaction to a detection cascade readout. Here, we establish a detection cascade producing a fluorescent readout in response to NAD(P)H via glutathione reductase and a subsequent thiol-mediated uncaging reaction, with a low nanomolar detection limit in plates. Further scaling down to microfluidic droplet screening is possible: the fluorophore is leakage-free and we report 3 orders of magnitude-improved sensitivity compared to absorbance-based systems, with a resolution of 361,000 product molecules per droplet. Our approach enables the use of nonfluorogenic substrates in droplet-based enrichments, with applicability in screening for glycosyl hydrolases and imine reductases (IREDs). To demonstrate the assay's readiness for combinatorial experiments, one round of directed evolution was performed to select a glycosidase processing a natural substrate, beechwood xylan, with improved kinetic parameters from a pool of >106 mutagenized sequences.
Collapse
Affiliation(s)
- Matthew Penner
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Oskar James Klein
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Maximilian Gantz
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Friederike E. H. Nintzel
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Anne-Cathrin Prowald
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Sally Boss
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paul Barker
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
2
|
Swoboda A, Zwölfer S, Duhović Z, Bürgler M, Ebner K, Glieder A, Kroutil W. Multistep Biooxidation of 5-(Hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid with H 2O 2 by Unspecific Peroxygenases. CHEMSUSCHEM 2024; 17:e202400156. [PMID: 38568785 DOI: 10.1002/cssc.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
5-(Hydroxymethyl)furfural (HMF) is a key platform chemical derived from renewable biomass sources, holding great potential as starting material for the synthesis of valuable compounds, thereby replacing petrochemical-derived counterparts. Among these valorised compounds, 2,5-furandicarboxylic acid (FDCA) has emerged as a versatile building block. Here we demonstrate the biocatalytic synthesis of FDCA from HMF via a one-pot three-step oxidative cascade performed via two operative steps under mild reaction conditions employing two unspecific peroxygenases (UPOs) using hydrogen peroxide as the only oxidant. The challenge of HMF oxidation by UPOs is the chemoselectivity of the first step, as one of the two possible oxidation products is only a poor substrate for further oxidation. The unspecific peroxygenase from Marasmius oreades (MorUPO) was found to oxidize 100 mM of HMF to 5-formyl-2-furoic acid (FFCA) with 95 % chemoselectivity. In the sequential one-pot cascade employing MorUPO (TON up to 13535) and the UPO from Agrocybe aegerita (AaeUPO, TON up to 7079), 100 mM of HMF were oxidized to FDCA reaching up to 99 % conversion and yielding 861 mg isolated pure crystalline FDCA, presenting the first example of a gram scale biocatalytic synthesis of FDCA involving UPOs.
Collapse
Affiliation(s)
- Alexander Swoboda
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Silvie Zwölfer
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Zerina Duhović
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Moritz Bürgler
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Katharina Ebner
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Anton Glieder
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
3
|
Yan X, Zhang X, Li H, Deng D, Guo Z, Kang L, Li A. Engineering of Unspecific Peroxygenases Using a Superfolder-Green-Fluorescent-Protein-Mediated Secretion System in Escherichia coli. JACS AU 2024; 4:1654-1663. [PMID: 38665664 PMCID: PMC11040664 DOI: 10.1021/jacsau.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Unspecific peroxygenases (UPOs), secreted by fungi, demonstrate versatility in catalyzing challenging selective oxyfunctionalizations. However, the number of peroxygenases and corresponding variants with tailored selectivity for a broader substrate scope is still limited due to the lack of efficient engineering strategies. In this study, a new unspecific peroxygenase from Coprinopsis marcescibilis (CmaUPO) is identified and characterized. To enhance or reverse the enantioselectivity of wildtype (WT) CmaUPO catalyzed asymmetric hydroxylation of ethylbenzene, CmaUPO was engineered using an efficient superfolder-green-fluorescent-protein (sfGFP)-mediated secretion system in Escherichia coli. Iterative saturation mutagenesis (ISM) was used to target the residual sites lining the substrate tunnel, resulting in two variants: T125A/A129G and T125A/A129V/A247H/T244A/F243G. The two variants greatly improved the enantioselectivities [21% ee (R) for WT], generating the (R)-1-phenylethanol or (S)-1-phenylethanol as the main product with 99% ee (R) and 84% ee (S), respectively. The sfGFP-mediated secretion system in E. coli demonstrates applicability for different UPOs (AaeUPO, CciUPO, and PabUPO-I). Therefore, this developed system provides a robust platform for heterologous expression and enzyme engineering of UPOs, indicating great potential for their sustainable and efficient applications in various chemical transformations.
Collapse
Affiliation(s)
| | | | | | - Di Deng
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Zhiyong Guo
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Lixin Kang
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| |
Collapse
|
4
|
Agosto-Maldonado A, Guo J, Niu W. Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis. J Biotechnol 2024; 385:1-12. [PMID: 38428504 PMCID: PMC11062483 DOI: 10.1016/j.jbiotec.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Emerging consumer demand for safer, more sustainable flavors and fragrances has created new challenges for the industry. Enzymatic syntheses represent a promising green production route, but the broad application requires engineering advancements for expanded diversity, improved selectivity, and enhanced stability to be cost-competitive with current methods. This review discusses recent advances and future outlooks for enzyme engineering in this field. We focus on carboxylic acid reductases (CARs) and unspecific peroxygenases (UPOs) that enable selective productions of complex flavor and fragrance molecules. Both enzyme types consist of natural variants with attractive characteristics for biocatalytic applications. Applying protein engineering methods, including rational design and directed evolution in concert with computational modeling, present excellent examples for property improvements to unleash the full potential of enzymes in the biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
| |
Collapse
|
5
|
Heckmann C, Bürgler M, Paul CE. Peroxygenase-Catalyzed Allylic Oxidation Unlocks Telescoped Synthesis of (1 S,3 R)-3-Hydroxycyclohexanecarbonitrile. ACS Catal 2024; 14:2985-2991. [PMID: 38449536 PMCID: PMC10913032 DOI: 10.1021/acscatal.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
The unmatched chemo-, regio-, and stereoselectivity of enzymes renders them powerful catalysts in the synthesis of chiral active pharmaceutical ingredients (APIs). Inspired by the discovery route toward the LPA1-antagonist BMS-986278, access to the API building block (1S,3R)-3-hydroxycyclohexanecarbonitrile was envisaged using an ene reductase (ER) and alcohol dehydrogenase (ADH) to set both stereocenters. Starting from the commercially available cyclohexene-1-nitrile, a C-H oxyfunctionalization step was required to introduce the ketone functional group, yet several chemical allylic oxidation strategies proved unsuccessful. Enzymatic strategies for allylic oxidation are underdeveloped, with few examples on selected substrates with cytochrome P450s and unspecific peroxygenases (UPOs). In this case, UPOs were found to catalyze the desired allylic oxidation with high chemo- and regioselectivity, at substrate loadings of up to 200 mM, without the addition of organic cosolvents, thus enabling the subsequent ER and ADH steps in a three-step one-pot cascade. UPOs even displayed unreported enantioselective oxyfunctionalization and overoxidation of the substituted cyclohexene. After screening of enzyme panels, the final product was obtained at titers of 85% with 97% ee and 99% de, with a substrate loading of 50 mM, the ER being the limiting step. This synthetic approach provides the first example of a three-step, one-pot UPO-ER-ADH cascade and highlights the potential for UPOs to catalyze diverse enantioselective allylic hydroxylations and oxidations that are otherwise difficult to achieve.
Collapse
Affiliation(s)
- Christian
M. Heckmann
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Moritz Bürgler
- Bisy
GmbH, Wünschendorf
292, 8200 Hofstätten
an der Raab, Austria
| | - Caroline E. Paul
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|