1
|
Weng CY, Liu LG, Sun M, Lu X, Hong X, Ye LW, Zhou B. Enantioselective Synthesis of Axially Chiral Tetrasubstituted Alkenes by Copper-Catalyzed C(sp 2)-H Functionalization of Arenes with Vinyl Cations. Angew Chem Int Ed Engl 2025; 64:e202418254. [PMID: 39565118 DOI: 10.1002/anie.202418254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Axially chiral tetrasubstituted alkenes are of increasing value and interest in chemistry-related areas. However, their catalytic asymmetric synthesis remains elusive, owing to the high steric repulsion and relatively low conformational stability. Herein, we disclose the straightforward construction of atropisomeric tetrasubstituted alkenes by effective enantiocontrol in a reaction with vinyl cation intermediates. This copper-catalyzed enantioselective C(sp2)-H functionalization of sterically hindered (hetero)arenes with vinyl cations enables the efficient and atom-economical preparation of axially chiral acyclic tetrasubstituted styrenes and pyrrolyl ethylenes with high atroposelectivities. Importantly, this reaction represents the first example of the assembly of axially chiral alkenes via vinyl cations. Computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity, Z/E selectivity and enantioselectivity. The synthetic utility has been demonstrated by diverse product derivatizations, chiral organocatalyst synthesis, as well as further applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Chen-Yong Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Miao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Ma K, Qi T, Hu L, Chen C, Wang W, Li J, Peng C, Zhan G, Han B. Atroposelective Synthesis of Biaryl N-Oxides via Cu-Catalyzed De Novo Heteroaromatic N-Oxide Ring Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405743. [PMID: 39120101 PMCID: PMC11515923 DOI: 10.1002/advs.202405743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Heteroaromatic N-oxides, renowned for their highly polar N─O bond and robust structure, exhibit significant bioactivities and have played a pivotal role in various drug development projects since the discovery of Minoxidil. Moreover, heteroaromatic N-oxides, featuring axially chiral biaryl frameworks, are indispensable as Lewis base catalysts and ligands in organic synthesis. Despite their importance, synthesizing these chiral compounds is challenging, necessitating chiral starting materials or resolution processes. Catalytic strategies rely on the functionalization of heteroaromatic N-oxide compounds, leading to products with a relatively limited skeletal diversity. This study introduces a Cu-catalyzed atroposelective method for synthesizing biaryl N-oxides via de novo heteroaromatic N-oxide ring formation. This mild and efficient approach achieves excellent stereoselectivities (up to 99:1 er), enabling the production of a wide array of N-oxides with novel heteroaromatic scaffolds. The axially chiral N-oxide product 3f demonstrates high stereoselectivity and recyclability as a Lewis base catalyst. Additionally, product 3e exhibits promising therapeutic efficacy against triple-negative breast cancer, with IC50 values of 4.8 and 5.2 µm in MDA-MB-231 and MDA-MB-468 cells, respectively. This research not only advances the synthesis of challenging chiral heteroaromatic N-oxides but also encourages further exploration of N-oxide entities in the discovery of bioactive small molecules.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Ting Qi
- Anti‐Infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Lei Hu
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Wan Wang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Jun‐Long Li
- Anti‐Infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| |
Collapse
|
3
|
Yadav SK, Jeganmohan M. Ir(III)-Catalyzed Tandem Annulation of Aromatic Amides with 1,6-Diynes via Dual C-H Bond Activation. Org Lett 2024; 26:7809-7816. [PMID: 39255330 DOI: 10.1021/acs.orglett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An Ir(III)-catalyzed annulation of aryl amides with 1,6-diynes via ortho- as well as meta-dual C-H bond activation reaction is reported. The scope of the annulation reaction was examined with various substituted aryl amides, as well as 1,6-diynes. In this protocol, 1,6-diynes exhibit diverse reactivity compared with internal alkynes. It is important to note that the three C-C bond formation takes place consecutively via ortho followed by meta-dual C-H bond annulation by using a weak chelating group in one pot. A possible catalytic reaction mechanism was proposed to account for the annulation reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|