1
|
Vega-Ces S, Brutiu BR, Kaiser D, Maulide N. Regioselective Synthesis of β,γ-Unsaturated Amides from Unactivated Alkenes. J Org Chem 2025; 90:4121-4126. [PMID: 40056122 PMCID: PMC11934130 DOI: 10.1021/acs.joc.5c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/10/2025]
Abstract
β,γ-Unsaturated amides are valuable substrates for downstream functionalization reactions but can be challenging to prepare. Herein, we introduce an approach featuring the regioselective addition of carbamoyl chlorides to unactivated alkenes, present its scope and limitations, and exemplify its synthetic utility.
Collapse
Affiliation(s)
- Sabela Vega-Ces
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Bogdan R. Brutiu
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
2
|
Zeng LH, Cui R, Huang Z, Zhang QW. Ni(II)-catalyzed nucleophilic substitution for the synthesis of allenylselenide. Chem Commun (Camb) 2025; 61:1192-1195. [PMID: 39693109 DOI: 10.1039/d4cc05065g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A method for synthesizing allenylselenides has been developed using readily available propargyl carbonate and phenylselenol. The reaction is catalyzed by Ni(II) and proceeds via a migratory insertion and β-oxygen elimination mechanism. Due to the strong interaction between Se and Ni leading to catalyst deactivation, zinc salt was used to mitigate the deleterious effects of Se anions on the catalyst, thereby facilitating the successful synthesis of the target products.
Collapse
Affiliation(s)
- Ling-Hong Zeng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Ranran Cui
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Zhuo Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Jin F, Hu Q, Wang Q, Sun J, Huang K, Yan CG, Han Y, Fei H, Wang L. Synthesis of Sulfoxides by Palladium-Catalyzed Arylation of Sulfenate Anions with Aryl Thianthrenium Salts. J Org Chem 2024; 89:13319-13328. [PMID: 39225729 DOI: 10.1021/acs.joc.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel and highly efficient Pd-catalyzed arylation of sulfenate anions with aryl thianthrenium salts is demonstrated. This procedure provides a practical protocol to synthesize various diaryl and alkyl aryl sulfoxides in moderate-to-good yields. The new approach shows mild reaction conditions, broad substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Feifei Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qianqian Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Jiangsu Lianhuan Pharmaceutical Co., Ltd, Yangzhou, Jiangsu 225002, China
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Haiyang Fei
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, PR China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
4
|
Zhang Y, Yang Z, Yang H, Li X, Yang L. Generation of sulfones utilizing β-sulfinyl esters as masked aryl sulfinates under redox-neutral conditions. Org Biomol Chem 2024; 22:3381-3385. [PMID: 38606462 DOI: 10.1039/d4ob00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A method for generation of SVI sulfones from β-sulfinyl esters (SIV) under transition-metal-free non-oxidative mild conditions is presented. Various sulfones have been achieved with moderate to excellent yields. The advantage of using β-sulfinyl esters as masked aryl sulfinates has also been exemplified using brominated substrates. Oxygen isotope-labeling experiments indicated that the oxygen atoms incorporated into the sulfone product come from the sulfoxide of the β-sulfinyl ester. Successive β-elimination/O-addition/sulfinate esterification/β-elimination processes are proposed for the mechanism of generating SVI from SIV.
Collapse
Affiliation(s)
- Yixin Zhang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Zhu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Hongjun Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| |
Collapse
|