1
|
Adam MSS, Al-Ateya ZHA, Makhlouf MM, Abdel-Rahman OS, Shtaiwi A, Khalil A. Substituent effect on the chemical and biological properties of diisatin dihydrazone Schiff bases: DFT and docking studies. Comput Biol Chem 2024; 113:108190. [PMID: 39232258 DOI: 10.1016/j.compbiolchem.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
According to the considered role of lipophilicity-hydrophobicity on organic Schiff base hydrazones, different substituents of phenyl, ethyl, and methyl groups were inserted in the synthetic strategy of diisatin dihydrazones (L1-4). The biochemical enhancement was evaluated depending on their inhibitive potential of the growth power of three human tumor cells, fungi, and bacteria. The biochemical assays assigned the effected role of different substituents of phenyl, ethyl, and methyl groups on the effectiveness of their diisatin dihydrazone reagents. The interacting modes with calf thymus DNA (i.e. Ct-DNA) were studied via viscometric and spectrophotometric titration. The organo-reagent L1 with the oxalic derivative assigned a performed inhibitive action for the examined microbes and the human tumor cell lines growing up over the terephthalic (L4) > malonic (L2) > succinic (L3) ones. From Kb = binding constant, and ∆Gb≠ = Gibb's free energy values, the binding of interaction within Ct-DNA was evaluated for all compounds (L1-4), in which L1, L3, and L4 assigned the highest reactivity referring to the covalent/non-covalent modes of interaction, as given for (L1-4), 14.32, 13.28, 10.87, and 12.41 × 107 mol-1 dm3, and -45.17, -43.24, -43.75, and -44.05 kJ mol-1, respectively. DFT and docking studies were achieved to support the current work.
Collapse
Affiliation(s)
- Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Zahraa H A Al-Ateya
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed M Makhlouf
- Department of Science and Technology, Ranyah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Obadah S Abdel-Rahman
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Queen Alia Airport Street, Amman 11118, Jordan
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
de la Mata Moratilla S, Casado Angulo S, Gómez-Casanova N, Copa-Patiño JL, Heredero-Bermejo I, de la Mata FJ, García-Gallego S. Zinc(II) Iminopyridine Complexes as Antibacterial Agents: A Structure-to-Activity Study. Int J Mol Sci 2024; 25:4011. [PMID: 38612821 PMCID: PMC11012978 DOI: 10.3390/ijms25074011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.
Collapse
Affiliation(s)
- Silvia de la Mata Moratilla
- University of Alcalá, Faculty of Sciences, Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR), 28805 Alcalá de Henares, Spain; (S.d.l.M.M.); (S.C.A.); (F.J.d.l.M.)
| | - Sandra Casado Angulo
- University of Alcalá, Faculty of Sciences, Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR), 28805 Alcalá de Henares, Spain; (S.d.l.M.M.); (S.C.A.); (F.J.d.l.M.)
| | - Natalia Gómez-Casanova
- University of Alcalá, Faculty of Pharmacy, Department of Biomedicine and Biotechnology, 28805 Alcalá de Henares, Spain; (N.G.-C.); (J.L.C.-P.)
| | - José Luis Copa-Patiño
- University of Alcalá, Faculty of Pharmacy, Department of Biomedicine and Biotechnology, 28805 Alcalá de Henares, Spain; (N.G.-C.); (J.L.C.-P.)
| | - Irene Heredero-Bermejo
- University of Alcalá, Faculty of Pharmacy, Department of Biomedicine and Biotechnology, 28805 Alcalá de Henares, Spain; (N.G.-C.); (J.L.C.-P.)
| | - Francisco Javier de la Mata
- University of Alcalá, Faculty of Sciences, Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR), 28805 Alcalá de Henares, Spain; (S.d.l.M.M.); (S.C.A.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Sandra García-Gallego
- University of Alcalá, Faculty of Sciences, Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR), 28805 Alcalá de Henares, Spain; (S.d.l.M.M.); (S.C.A.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
3
|
Khalil A, Adam MSS. Bimetallic bis-Aroyldihydrazone-Isatin Complexes of High O=V(IV) and Low Cu(II) Valent Ions as Effective Biological Reagents for Antimicrobial and Anticancer Assays. Molecules 2024; 29:414. [PMID: 38257327 PMCID: PMC10820496 DOI: 10.3390/molecules29020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Due to the versatile bioreactivity of aroyldihydrazone complexes as cost-effective alternatives with different transition metals, two novel bimetallic homo-complexes (VOLph and CuLph) were prepared via the coordination of a terephthalic dihydrazone diisatin ligand (H2Lph) with VO2+ and Cu2+ ions, respectively. The structure elucidation was confirmed by alternative spectral methods. Biologically, the H2Lph ligand and its MLph complexes (M2+ = VO2+ or Cu2+) were investigated as antimicrobial and anticancer agents. Their biochemical activities towards ctDNA (calf thymus DNA) were estimated using measurable titration viscometrically and spectrophotometrically, as well as the gel electrophoresis technique. The growth inhibition of both VOLph and CuLph complexes against microbial and cancer cells was measured, and the inhibition action, MIC, and IC50 were compared to the inhibition action of the free H2Lph ligand. Both VOLph and CuLph showed remarkable interactive binding with ctDNA compared to the free ligand H2Lph, based on Kb = 16.31, 16.04 and 12.41 × 107 mol-1 dm3 and ΔGb≠ = 47.11, -46.89, and -44.05 kJ mol-1 for VOLph, CuLph, and H2Lph, respectively, due to the central metal ion (VIVO and CuII ions). VOLph (with a higher oxidation state of the V4+ ion and oxo-ligand) exhibited enhanced interaction with the ctDNA molecule compared to CuLph, demonstrating the role and type of the central metal ion within the performed electronegative and electrophilic characters.
Collapse
Affiliation(s)
- Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Shaker S. Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| |
Collapse
|
4
|
Dube NP, Thatyana M, Mokgalaka-Fleischmann NS, Mansour AM, Tembu VJ, Manicum ALE. Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases. Molecules 2024; 29:406. [PMID: 38257319 PMCID: PMC10819944 DOI: 10.3390/molecules29020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fatalities caused by infectious diseases (i.e., diseases caused by parasite, bacteria, and viruses) have become reinstated as a major public health threat globally. Factors such as antimicrobial resistance and viral complications are the key contributors to the death numbers. As a result, new compounds with structural diversity classes are critical for controlling the virulence of pathogens that are multi-drug resistant. Derivatization of bio-active organic molecules with organometallic synthons is a promising strategy for modifying the inherent and enhanced properties of biomolecules. Due to their redox chemistry, bioactivity, and structural diversity, organometallic moieties make excellent candidates for lead structures in drug development. Furthermore, organometallic compounds open an array of potential in therapy that existing organic molecules lack, i.e., their ability to fulfill drug availability and resolve the frequent succumbing of organic molecules to drug resistance. Additionally, metal complexes have the potential towards metal-specific modes of action, preventing bacteria from developing resistance mechanisms. This review's main contribution is to provide a thorough account of the biological efficacy (in vitro and in vitro) of metal-based complexes against infectious diseases. This resource can also be utilized in conjunction with corresponding journals on metal-based complexes investigated against infectious diseases.
Collapse
Affiliation(s)
- Nondumiso P. Dube
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Maxwell Thatyana
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Ntebogeng S. Mokgalaka-Fleischmann
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Ahmed M. Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Amanda-Lee E. Manicum
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| |
Collapse
|
5
|
Structural characterization and molecular docking studies of biologically active platinum(II) and palladium(II) complexes of ferrocenyl Schiff bases. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
El-Lateef HMA, El-Dabea T, Khalaf MM, Abu-Dief AM. Development of Metal Complexes for Treatment of Coronaviruses. Int J Mol Sci 2022; 23:6418. [PMID: 35742870 PMCID: PMC9223400 DOI: 10.3390/ijms23126418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease (SARS-CoV-2) is a global epidemic. This pandemic, which has been linked to high rates of death, has forced some countries throughout the world to implement complete lockdowns in order to contain the spread of infection. Because of the advent of new coronavirus variants, it is critical to find effective treatments and vaccines to prevent the virus's rapid spread over the world. In this regard, metal complexes have attained immense interest as antibody modifiers and antiviral therapies, and they have a lot of promise towards SARS-CoV-2 and their suggested mechanisms of action are discussed, i.e., a new series of metal complexes' medicinal vital role in treatment of specific proteins or SARS-CoV-2 are described. The structures of the obtained metal complexes were fully elucidated by different analytical and spectroscopic techniques also. Molecular docking and pharmacophore studies presented that most of complexes studied influenced good binding affinity to the main protease SARS-CoV-2, which also was attained as from the RCSB pdb (Protein Data Bank) data PDB ID: 6 W41, to expect the action of metal complexes in contradiction of COVID-19. Experimental research is required to determine the pharmacokinetics of most of the complexes analyzed for the treatment of SARS-CoV-2-related disease. Finally, the toxicity of a metal-containing inorganic complex will thus be discussed by its capability to transfer metals which may bind with targeted site.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
- Chemistry Department, College of Science, Taibah University, Madinah 344, Saudi Arabia
| |
Collapse
|
7
|
Noriega S, Cardoso-Ortiz J, López-Luna A, Cuevas-Flores MDR, Flores De La Torre JA. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals (Basel) 2022; 15:717. [PMID: 35745635 PMCID: PMC9230682 DOI: 10.3390/ph15060717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
The search for new and efficient pharmaceuticals is a constant struggle for medicinal chemists. New substances are needed in order to treat different pathologies affecting the health of humans and animals, and these new compounds should be safe, effective and have the fewest side effects possible. Some functional groups are known for having biological activity; in this matter, the nitro group (NO2) is an efficient scaffold when synthesizing new bioactive molecules. Nitro compounds display a wide spectrum of activities that include antineoplastic, antibiotic, antihypertensive, antiparasitic, tranquilizers and even herbicides, among many others. Most nitro molecules exhibit antimicrobial activity, and several of the compounds mentioned in this review may be further studied as lead compounds for the treatment of H. pylori, P. aeruginosa, M. tuberculosis and S. mutans infections, among others. The NO2 moiety triggers redox reactions within cells causing toxicity and the posterior death of microorganisms, not only bacteria but also multicellular organisms such as parasites. The same effect may be present in humans as well, so the nitro groups can be considered both a pharmacophore and a toxicophore at the same time. The role of the nitro group itself also has a deep effect on the polarity and electronic properties of the resulting molecules, and hence favors interactions with some amino acids in proteins. For these reasons, it is fundamental to analyze the recently synthesized nitro molecules that show any potential activity in order to develop new pharmacological treatments that enhance human health.
Collapse
Affiliation(s)
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (S.N.); (A.L.-L.); (M.D.R.C.-F.); (J.A.F.D.L.T.)
| | | | | | | |
Collapse
|
8
|
Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, characterization, DFT calculations, Drug-Likeness, in vitro antimicrobial screening and molecular docking analysis. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Omar (Al-Ahdal) ZT, Jadhav S, Shejul S, Chavan P, Pathrikar R, Rai M. Synthesis, Magnetic Moment, Antibacterial, and Antifungal Studies of INH Incorporating Schiff Base Metal Complexes. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Shivaji Jadhav
- Department of Chemistry, Tarai College of Arts and Science, Aurangabad, Maharashtra, India
| | - Sumit Shejul
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| | - Pravin Chavan
- Department of Chemistry, Doshi Vakil College, Goregaon, Maharashtra, India
| | - Rashmi Pathrikar
- Department of Chemistry, Rajshri Shahu College, Aurangabad, Maharashtra, India
| | - Megha Rai
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| |
Collapse
|
10
|
Synthesis, spectroscopic characterization, and thermal studies of novel Schiff base complexes: theoretical simulation studies on coronavirus (COVID-19) using molecular docking. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC8351233 DOI: 10.1007/s13738-021-02359-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Hashem HE, Nath A, Kumer A. Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Khalil EA, Mohamed GG. Preparation, spectroscopic characterization and antitumor-antimicrobial studies of some Schiff base transition and inner transition mixed ligand complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Deghadi RG, Elsharkawy AE, Ashmawy AM, Mohamed GG. Antibacterial and anticorrosion behavior of bioactive complexes of selected transition metal ions with new 2‐acetylpyridine Schiff base. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | | - Ashraf M. Ashmawy
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
14
|
Omar (Al-Ahdal) ZT, Jadhav S, Pathrikar R, Shejul S, Rai M. Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Shivaji Jadhav
- Department of Chemistry, Tarai College Arts and Science, Aurangabad, Maharashtra, India
| | - Rashmi Pathrikar
- Department of Chemistry, Rajshri Shahu College, Aurangabad, Maharashtra, India
| | - Sumit Shejul
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| | - Megha Rai
- Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, Maharashtra, India
| |
Collapse
|
15
|
Preparation, Antimicrobial Activity and Docking Study of Vanadium Mixed Ligand Complexes Containing 4-Amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol and Aminophenol Derivatives. Processes (Basel) 2021. [DOI: 10.3390/pr9061008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The synthesis of mixed-ligand complexes is considered an important strategy for developing new metal complexes of enhanced biological activity. This paper presents the synthesis, characterization, in vitro antimicrobial assessment, and theoretical molecular docking evaluation for synthesized oxidovanadium (V) complexes. The proposed structures of the synthesized compounds were proved using elemental and different spectroscopic analysis. The antimicrobial tests showed moderate activity of the compounds against the Gram-positive bacterial strains and the fungal yeast, whereas no activity was observed against the Gram-negative bacterial strains. The performance of density functional theory (DFT) was conducted to study the interaction mode of the targeted compounds with the biological system. Calculating the quantitative structure-activity relationship (QSPR) was performed depending on optimization geometries, frontier molecular orbitals (FMOs), and chemical reactivities for synthesized compounds. The molecular electrostatic potentials (MEPs) that were plotted link the interaction manner of synthesized compounds with the receptor. The molecular docking evaluation revealed that the examined compounds may possess potential antibacterial activity.
Collapse
|
16
|
Deghadi RG, Abbas AA, Mohamed GG. Theoretical and experimental investigations of new bis (amino triazole) schiff base ligand: Preparation of its UO
2
(II), Er (III), and La (III) complexes, studying of their antibacterial, anticancer, and molecular docking. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
| | - Ashraf A. Abbas
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
| |
Collapse
|
17
|
Heteroleptic cadmium complex of glimepiride–metformin mixed ligand: synthesis, characterization, and antibacterial study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01535-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Synthesis, Characterization and Biological Activity of Transition Metals Schiff Base Complexes Derived from 4,6-Diacetylresorcinol and 1,8-Naphthalenediamine. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01867-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020026] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is an increasingly serious threat to global public health that requires innovative solutions to counteract new resistance mechanisms emerging and spreading globally in infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations available for an effective antimicrobial drug and new compounds emerging from the industrial pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new active antimicrobial agents by exploiting their wide range of three-dimensional geometries and virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity, biological targets and modes of action. This review describes recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal complexes in relation to the rich structural chemical variations of the same. The aim is to provide a short vade mecum for the readers interested in the subject that can complement other reviews.
Collapse
|
20
|
Xu J, Yang Y, Baigude H, Zhao H. New ferrocene-triazole derivatives for multisignaling detection of Cu 2+ in aqueous medium and their antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117880. [PMID: 31836398 DOI: 10.1016/j.saa.2019.117880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Ferrocene-based naphthalene or quinoline receptors 1-4 linked by triazole were designed and synthesized. Their recognition properties of metal cations have been investigated systematically in aqueous environment. Upon addition 1 equiv. of Cu2+ ion, receptors 1 (C23H19FeN3O) and 2 (C22H18FeN4O) showed fluorescent turn-off, enhanced absorption and color variations. At the same time, receptor 1 also caused the perturbation of redox potential after addition 1 equiv. of Cu2+ ion. Therefore, receptors 1 and 2 behaved as naked-eye chemosensors and fluorescent probes for Cu2+ without interference by other ions and with low detection limit. In addition, receptor 1 could also be considered electrochemical sensor for Cu2+ having excellent sensitivity and selectivity. However, increasing the molecules flexibility resulted in the lower selectivity of ion recognition in the case of receptors 3 (C24H21FeN3O) and 4 (C23H20FeN4O). Furthermore, this series of compounds were nontoxicity and receptor 1 exhibited certain antibacterial activity.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongqiang Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Huricha Baigude
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Haiying Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China.
| |
Collapse
|
21
|
Jain P, Kumar D, Chandra S, Misra N. Experimental and theoretical studies of Mn(II) and Co(II) metal complexes of a tridentate Schiff's base ligand and their biological activities. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pallavi Jain
- Department of ChemistrySRM‐IST Delhi NCR Campus Ghaziabad 201204 India
| | - Dinesh Kumar
- School of Chemical SciencesCentral University of Gujarat Gandhinagar 382030 India
| | - Sulekh Chandra
- Department of ChemistryZakir Husain Delhi College JLN Marg New Delhi 110002 India
| | - Namita Misra
- Residential Complex IIT Jodhpur Jodhpur 342037 India
| |
Collapse
|
22
|
El-Sonbati A, Mahmoud W, Mohamed GG, Diab M, Morgan S, Abbas S. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5048] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A.Z. El-Sonbati
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| | - W.H. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
- Egypt Nanotechnology Center; Cairo University; El-Sheikh Zayed, 6 October 12588 Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| | - Sh.M. Morgan
- Environmental Monitoring Laboratory, Ministry of Health; Port Said Egypt
| | - S.Y. Abbas
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| |
Collapse
|
23
|
Diab M, Mohamed GG, Mahmoud W, El‐Sonbati A, Morgan S, Abbas S. Inner metal complexes of tetradentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4945] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M.A. Diab
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
- Egypt Nanotechnology CenterCairo University El‐Sheikh Zayed, 6th October 12588 Egypt
| | - W.H. Mahmoud
- Chemistry Department, Faculty of ScienceCairo University Giza 12613 Egypt
| | - A.Z. El‐Sonbati
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| | - Sh.M. Morgan
- Environmental Monitoring Laboratories, Ministry of Health Port Said Egypt
| | - S.Y. Abbas
- Chemistry Department, Faculty of ScienceDamietta University Egypt
| |
Collapse
|
24
|
Thakor KP, Lunagariya MV, Bhatt BS, Patel MN. Fluorescence and Absorption Titrations of Bio-relevant Imidazole Based Organometallic Pd(II) Complexes with DNA: Synthesis, Characterization, DNA Interaction, Antimicrobial, Cytotoxic and Molecular Docking Studies. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Structure, electronic properties, and NBO and TD-DFT analyses of nickel(II), zinc(II), and palladium(II) complexes based on Schiff-base ligands. J Mol Model 2018; 24:301. [PMID: 30276586 DOI: 10.1007/s00894-018-3839-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
In this work we studied the structural and electronic properties of the metal-Schiff base complexes Ni[Formula: see text] (1), Pd[Formula: see text] (2), Zn[Formula: see text] (3), and Ni[Formula: see text](4), where L1 and L2 are Schiff bases synthesized from salicylaldehyde and 2-hydroxy-5-methylbenzaldehyde, respectively. Natural bond analysis showed that in complexes 1 and 2, the metal ion coordinates to the ligands through electron donation from lone pairs on ligand nitrogen and oxygen atoms to s and d orbitals on the metal ion. In complex 3, metal-N and metal-O bonds are formed through charge transfer from the lone pairs on nitrogen and oxygen atoms to an s orbital of Zn. Dimethylation of the phenolate rings in the ligands decreases the energy gap and redshifts the spectrum of the nickel complex. The main absorptions observed were assigned on the basis of singlet-state transitions. The simulated spectra of the two complexes 1 and 2 are characterized by excited states with ligand-to-ligand charge-transfer (LLCT), metal-to-ligand charge-transfer (MLCT), ligand-to-metal charge-transfer (LMCT), and metal-centered (MC) character. Graphical abstract Geometric structure of the palladium complex.
Collapse
|