1
|
Butera V. Density functional theory methods applied to homogeneous and heterogeneous catalysis: a short review and a practical user guide. Phys Chem Chem Phys 2024; 26:7950-7970. [PMID: 38385534 DOI: 10.1039/d4cp00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The application of density functional theory (DFT) methods in catalysis has been growing fast in the last few decades thanks to both the availability of more powerful high computing resources and the development of new efficient approximations and approaches. DFT calculations allow for the understanding of crucial catalytic aspects that are difficult or even impossible to access by experiments, thus contributing to faster development of more efficient and selective catalysts. Depending on the catalytic system and properties under investigation, different approaches should be used. Moreover, the reliability of the obtained results deeply depends on the approximations involved in both the selected method and model. This review addresses chemists, physicists and materials scientists whose interest deals with the application of DFT-based computational tools in both homogeneous catalysis and heterogeneous catalysis. First, a brief introduction to DFT is presented. Then, the main approaches based on atomic centered basis sets and plane waves are discussed, underlining the main differences, advantages and limitations. Eventually, guidance towards the selection of the catalytic model is given, with a final focus on the evaluation of the energy barriers, which represents a crucial step in all catalytic processes. Overall, the review represents a rational and practical guide for both beginners and more experienced users involved in the wide field of catalysis.
Collapse
Affiliation(s)
- Valeria Butera
- CEITEC - Central European Institute of Technology Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Department of Science and Biological Chemical and Pharmaceutical Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
2
|
Kumar B, Devi J, Dubey A, Tufail A, Antil N. Biological and computational investigation of transition metal(II) complexes of 2-phenoxyaniline-based ligands. Future Med Chem 2023; 15:1919-1942. [PMID: 37929611 DOI: 10.4155/fmc-2023-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Aim: In the 21st century, we are witness of continuous onslaughts of various pathogen deformities which are a major cause of morbidity and mortality worldwide. Therefore, to investigate the grave for these deformities, antioxidant, anti-inflammatory and antimicrobial biological activities were carried out against newly synthesized Schiff base ligands and their transition metal complexes, which are based on newly synthesized 2-phenoxyaniline and salicylaldehyde derivatives. Materials & methods: The synthesized compounds were characterized by various physiochemical studies, demonstrating the octahedral stereochemistry of the complexes. Results: The biological assessments revealed that complex 6 (3.01 ± 0.01 μM) was found to be highly active for oxidant ailments whereas complex 14 (7.14 ± 0.05 μM, 0.0041-0.0082 μmol/ml) was observed as highly potent for inflammation and microbial diseases. Conclusion: Overall, the biological and computational studies demonstrate that the nickel(II) complex 14 can act as an excellent candidate for pathogen deformities.
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600077, India
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Aisha Tufail
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Nidhi Antil
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
3
|
Danil de Namor AF, Al Hakawati N. Anion Complexation by an Azocalix[4]arene Derivative and the Scope of Its Fluoride Complex Salt to Capture CO 2 from the Air. Molecules 2023; 28:6029. [PMID: 37630281 PMCID: PMC10458297 DOI: 10.3390/molecules28166029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
A newly synthesized upper rim azocalix[4]arene, namely 5,11,17,23-tetra[(4-ethylacetoxyphenyl) (azo)]calix[4]arene, CA-AZ has been fully characterized, and its chromogenic and selective properties for anions are reported. Among univalent anions, the receptor is selective for the fluoride anion, and its mode of interaction in solution is discussed. The kinetics of the complexation process were found to be very fast as reflected in the immediate colour change observed with a naked eye resulting from the receptor-anion interaction. An emphasis is made about the relevance in selecting a solvent in which the formulation of the process is representative of the events taking place in the solution. The composition of the fluoride complex investigated using UV/VIS spectrophotometry, conductance measurements and titration calorimetry was 1:1, and the thermodynamics of complexation of anions and CA-AZ in DMSO were determined. The fluoride complex salt was isolated, and a detailed investigation was carried out to assess its ability to remove CO2 from the air. The recycling of the complex was easily achieved. Final conclusions are given.
Collapse
Affiliation(s)
- Angela F. Danil de Namor
- Laboratory of Thermochemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Nawal Al Hakawati
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli 1300, Lebanon;
| |
Collapse
|
4
|
Villaman D, Vega A, Santa Maria de la Parra L, León IE, Levín P, Toro PM. Anticancer activity of Ni(II) and Zn(II) complexes based on new unsymmetrical salophen-type ligands: synthesis, characterization and single-crystal X-ray diffraction. Dalton Trans 2023; 52:10855-10868. [PMID: 37486008 DOI: 10.1039/d3dt00800b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The discovery of new coordination compounds with anticancer properties is an active field of research due to the severe side effects of platinum-based compounds currently used in chemotherapy. In the search for new agents for the treatment of cancer, unsymmetrical N2O2-tetradentate ligand (H2L1 and H2L2) and their Ni(II) and Zn(II) asymmetric complexes (NiII-L1-2 and ZnII-L1-2) have been synthesized and fully characterized. 1H NMR studies revealed that the ligands and complexes were stable in mixtures of DMSO : D2O (9 : 1). Complementary UV-Vis studies confirmed that ZnII derivatives also exhibit high stability in mixtures DMSO : buffer (6 : 4) after 24 h. Single-crystal X-ray diffraction studies confirmed the molecular structures of H2L1, H2L2, NiII-L1, and NiII-L2. At the molecular level, complexes were completely planar without significant distortions of the square-planar geometry according to τ4 parameter. Furthermore, the crystalline structures revealed non-classical intermolecular interactions of the C-H⋯O and the Ni⋯Ni type. The ligands and complexes were screened against the human osteosarcoma (MG-63), human colon cancer (HCT-116), breast cancer (MDA-MB-231) cell lines, and non-cancerous cells (L929). H2L1 and H2L2 ligands not caused cytotoxic effects at a concentration of 100 μM, while NiII-L2, ZnII-L1, and ZnII-L2 complexes induce cytotoxic effects in all cell lines. NiII-L2 was a more active complex against MG-63 (3.9 ± 1.5) and HCT-116 (3.4 ± 1.7) cell lines with IC50 values in the low micromolar range. In addition, this compound was 10-, 5-, and 11-fold more potent than cisplatin in MG-63 (39 ± 1.8), HCT-116 (17.2), and MDA-MB-231 (131 ± 18), respectively. Three complexes exhibited great selectivity for tumoral cells with SI values ranging from 1.6 to 7.4.
Collapse
Affiliation(s)
- David Villaman
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Cs. Química, Universidad de Concepción, Chile.
| | - Andrés Vega
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Av. República 498, Santiago, Chile
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata 1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina
| | - Pedro Levín
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Patricia M Toro
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
5
|
Khedr AM, Gouda AA, El‑Ghamry HA. Nano-synthesis approach, elaborated spectral, biological activity and in silico assessment of novel nano-metal complexes based on sulfamerazine azo dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Deghadi RG, Elsharkawy AE, Ashmawy AM, Mohamed GG. Antibacterial and anticorrosion behavior of bioactive complexes of selected transition metal ions with new 2‐acetylpyridine Schiff base. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | | - Ashraf M. Ashmawy
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
7
|
Wang L, Huang C, Hu F, Cui W, Li Y, Li J, Zong J, Liu X, Yuan XA, Liu Z. Preparation and antitumor application of N-phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(III) Schiff base complexes. Dalton Trans 2021; 50:15888-15899. [PMID: 34709269 DOI: 10.1039/d1dt02959b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Four N-phenylcarbazole/triphenylamine-appended half-sandwich iridium(III) salicylaldehyde Schiff base complexes ([(η5-Cpx)Ir(O^N)Cl]) were prepared and characterized. The complexes exhibited similar antitumor activity to cisplatin and effectively inhibited the migration of tumor cells. Furthermore, the complexes showed favourable hydrolytic activity, while remaining relatively stable in the plasma environment, which facilitated the binding of serum proteins and transport through them. These complexes could decrease the mitochondrial membrane potential, catalyze the oxidation of nicotinamide adenine dinucleotide, induce an increase in intracellular reactive oxygen species (ROS), and eventually result in apoptosis. Aided by their suitable fluorescence property, laser confocal detection showed that the complexes followed an energy-dependent mechanism for their cellular uptake, effectively accumulating in the lysosome and leading to lysosomal damage. In summary, the half-sandwich iridium(III) salicylaldehyde Schiff base complexes could induce lysosomal damage, increase intracellular ROS, and lead to apoptosis, which contributed to their antitumor mechanism of oxidation.
Collapse
Affiliation(s)
- Liyan Wang
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Chenyang Huang
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Fenglian Hu
- Liuhang Middle School, Jining High-tech Zone, Jining 272173, China
| | - Wen Cui
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiqing Li
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jingwen Li
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jiawen Zong
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xicheng Liu
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xiang-Ai Yuan
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
8
|
Pervaiz M, Sadiq S, Sadiq A, Younas U, Ashraf A, Saeed Z, Zuber M, Adnan A. Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Complex Activity and Sensor Potential toward Metal Ions in Environmental Water Samples of N-Phthalimide Azo-Azomethine Dyes. Molecules 2021; 26:molecules26195885. [PMID: 34641430 PMCID: PMC8513033 DOI: 10.3390/molecules26195885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Herein, the spectral and electrochemical characterizations of three different substituted N-phthalimide azo-azomethine (NAA) dyes (L) containing an o-hydroxy group and their NAA-M(II) chelates [M(II): Cu, Ni, Co, Pb] were reported by using UV–Vis and fluorescence spectroscopy and potentiometric and voltamperometric techniques. The pK value of the dyes as well as the stoichiometry and stability of the NAA-metal chelates were studied, and the stoichiometry was found to be mostly 1:2 (ML2) with high complex stability constant values. The sensor activity of N-phthalimide azo-azomethine derivatives toward pH and metal ions has been also investigated and tested for indicator application in acid–base analysis and detection of Cu(II) ions in real samples of surface river water using voltamperometric detection. The results showed that one of the ligands possesses the highest electrochemical response upon binding to copper ions and could be successfully used in the analysis of copper in water at a concentration range of the analyte from 3.7 × 10−7 to 5.0 × 10−6 mol L−1, with analytical characteristics of the method being Sr = 1.5%, LOD = 3.58 µg L−1 and LOQ =11.9 µg L−1
Collapse
|
11
|
DNA interaction, anticancer, antibacterial, ROS and lipid peroxidation studies of quinoxaline based organometallic Re(I) carbonyls. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Vlasenko VG, Shapovalova SO, Guda AA, Chernyshev AV, Starikov AG, Smolentsev GY, Burlov AS, Mashchenko SA, Soldatov AV. XAS Diagnostic of the Photoactive State in Co(II) Azobenzene Complex in Organic Solvents. ChemistrySelect 2021. [DOI: 10.1002/slct.202101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Valery G. Vlasenko
- Southern Federal University Institute of Physics Stachki ave. 194 344090 Rostov-on-Don Russian Federation
| | - Svetlana O. Shapovalova
- Southern Federal University The Smart Materials Research Institute Sladkova street 178/24 A. Rostov-on-Don 344090 Russian Federation
| | - Alexander A. Guda
- Southern Federal University The Smart Materials Research Institute Sladkova street 178/24 A. Rostov-on-Don 344090 Russian Federation
| | - Anatolii V. Chernyshev
- Southern Federal University Institute of Physical and Organic Chemistry Stachki ave. 194/2 344090 Rostov-on-Don Russian Federation
| | - Andrey G. Starikov
- Southern Federal University Institute of Physical and Organic Chemistry Stachki ave. 194/2 344090 Rostov-on-Don Russian Federation
| | | | - Anatolii S. Burlov
- Southern Federal University Institute of Physical and Organic Chemistry Stachki ave. 194/2 344090 Rostov-on-Don Russian Federation
| | - Sergey A. Mashchenko
- Southern Federal University Institute of Physical and Organic Chemistry Stachki ave. 194/2 344090 Rostov-on-Don Russian Federation
| | - Alexander V. Soldatov
- Southern Federal University The Smart Materials Research Institute Sladkova street 178/24 A. Rostov-on-Don 344090 Russian Federation
| |
Collapse
|
13
|
Mondal D, Balakrishna MS. Recent advances in organophosphorus-chalcogen and organophosphorus-pincer based macrocyclic compounds and their metal complexes. Dalton Trans 2021; 50:6382-6409. [PMID: 34002740 DOI: 10.1039/d1dt00593f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The design and development of phosphorus based macrocycles containing one or more other heteroatoms is of crucial importance for the enhancement of modern synthetic chemistry. In recent years focus on phosphorus based macromolecules has led to intriguing and innovative structures with a variety of applications, including photophysical and host-guest properties, and in organic synthesis. This article summarizes the recent advancements in the synthesis of macrocycles that consist of organophosphorus-chalcogen (P-E, P[double bond, length as m-dash]E; E = O, S, Se) and organophosphorus-pincer based macrocyclic ligands and their transition metal complexes with emphasis given to synthetic methodologies. The reactions involve the modification of simple macrocycles with phosphorus sources or phosphorus-based chalcogenating reagents. Transition metal complexes of phosphine-based macrocyclic pincer ligands and their reactivity are also included.
Collapse
Affiliation(s)
- Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
14
|
Synthesis, characterization and spectral properties of novel azo-azomethine-tetracarboxylic Schiff base ligand and its Co(II), Ni(II), Cu(II) and Pd(II) complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Ekowo LC, Eze SI, Ezeorah JC, Groutso T, Atiga S, Lane JR, Okafor S, Akpomie KG, Okparaeke OC. Synthesis, structure, Hirshfeld surface, DFT and in silico studies of 4-[(E)-(2, 5-dimethoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (DMAP) and its metal complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Muniz-Miranda M, Muniz-Miranda F, Giorgetti E. Spectroscopic and Microscopic Analyses of Fe 3O 4/Au Nanoparticles Obtained by Laser Ablation in Water. NANOMATERIALS 2020; 10:nano10010132. [PMID: 31936852 PMCID: PMC7023500 DOI: 10.3390/nano10010132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Magneto-plasmonic nanoparticles constituted of gold and iron oxide were obtained in an aqueous environment by laser ablation of iron and gold targets in two successive steps. Gold nanoparticles are embedded in a mucilaginous matrix of iron oxide, which was identified as magnetite by both microscopic and spectroscopic analyses. The plasmonic properties of the obtained colloids, as well as their adsorption capability, were tested by surface-enhanced Raman scattering (SERS) spectroscopy using 2,2′-bipyridine as a probe molecule. DFT calculations allowed for obtaining information on the adsorption of the ligand molecules that strongly interact with positively charged surface active sites of the gold nanoparticles, thus providing efficient SERS enhancement. The presence of iron oxide gives the bimetallic colloid new possibilities of adsorption in addition to those inherent to gold nanoparticles, especially regarding organic pollutants and heavy metals, allowing to remove them from the aqueous environment by applying a magnetic field. Moreover, these nanoparticles, thanks to their low toxicity, are potentially useful not only in the field of sensors, but also for biomedical applications.
Collapse
Affiliation(s)
- Maurizio Muniz-Miranda
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Institute of Complex Systems (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
- Correspondence:
| | - Francesco Muniz-Miranda
- École Nationale Supérieure de Chimie de Paris and PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE 2027, 11, rue Pierre et Marie Curie, F-75005 Paris, France;
| | - Emilia Giorgetti
- Institute of Complex Systems (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
17
|
FRET-based fluorescent nanoprobe platform for sorting of active microorganisms by functional properties. Biosens Bioelectron 2019; 148:111832. [PMID: 31706173 DOI: 10.1016/j.bios.2019.111832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Fluorescence-activated cell sorting (FACS) has rarely been applied to screening of microorganisms because of poor detection resolution, which is compromised by poor stability, toxicity, or interference from background fluorescence of the fluorescence sensors used. Here, a fluorescence-based rapid high-throughput cell sorting method was first developed using a fluorescence resonance energy transfer (FRET) fluorescent nanoprobe NP-RA, which was constructed by coating a silica nanoparticle with Rhodamine B and methyl-red (an azo dye). Rhodamine B (inner layer) is the FRET donor and methyl-red (outer layer) is the acceptor. This ready-to-use NP-RA is non-fluorescent, but fluoresces once the outer layer is degraded by microorganisms. In our experiment, NP-RA was ultrasensitive to model strain Shewanella decolorationis S12, showing a broad detection range from 8.0 cfu/mL to 8.7 × 108 cfu/mL under confocal laser scanning microscopy, and from 1.1 × 107 to 9.36 × 108 cfu/mL under a fluorometer. In addition, NP-RA bioimaging can clearly identify other azo-respiring cells in the microbial community, including Bosea thiooxidans DSM 9653 and Lysinibacillus pakistanensis NCCP-54. Furthermore, the fluorescent probe NP-RA is compatible with downstream FACS so that azo-respiring cells can be rapidly sorted out directly from an artificial microbial community. To our knowledge, no fluorescent nanoprobe has yet been designed for tracking and sorting azo-respiration functional microorganisms.
Collapse
|