1
|
Maurya MR, Maurya SK, Kumar N, Avecilla F. Nonoxidovanadium(IV) Complex-Catalyzed Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes, Biscoumarins, and Xanthenes under Green Conditions. J Org Chem 2024; 89:12143-12158. [PMID: 39177312 DOI: 10.1021/acs.joc.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/24/2024]
Abstract
Reaction of [VIVO(acac)2] (Hacac = acetylacetone) with a Mannich base, N,N,N',N'-tetrakis(2-hydroxy-3,5-di-tert-butyl benzyl)-1,2-diaminoethane (H4L, I) in a 1:1 molar ratio in MeOH, leads to the formation of the nonoxidovanadium(IV) complex [VIVL] (1). Air stable complex 1 has been characterized using various spectroscopic techniques, DFT calculations, and single-crystal X-ray studies. 1 adopts distorted octahedral geometry where ligand coordinates through all coordination functionalities available. This complex has been used as a catalyst in the one-pot, three-component synthesis of 2-amino-3-cyano-4H-pyrans using 1,3-dicarbonyls (1,3-cyclohexanedione, dimedone, barbituric acid, and 4-hydroxycoumarin), malononitrile, and various substituted aromatic aldehydes in equimolar amounts employing ethanol as a green solvent. The catalytic reaction revealed that the multicomponent synthesis of 4H-pyrans and chromenes is greatly influenced by both types of 1,3-dicarbonyl compound employed and the nature of the substituent on the aromatic ring of the aldehyde. Synthesized catalyst has also been used in the synthesis of pharmacologically relevant oxygen-containing heterocycles, specifically, 1,8-dioxo-octahydro-1H-xanthenes and biscoumarins. The possible mechanism for the synthesized one-pot, multicomponent product has been proposed by isolating intermediate(s) generated during synthesis.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shailendra K Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruna, A Coruna 15071, Spain
| |
Collapse
|
2
|
Rezaei F, Alinezhad H, Maleki B. Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one-pot multicomponent synthesis of 2-amino-4H-chromene and 1,2,3,6-tetrahydropyrimidine. Sci Rep 2023; 13:20562. [PMID: 37996476 PMCID: PMC10667485 DOI: 10.1038/s41598-023-47794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Captopril (CAP) is a safe, cost-effective, and environmentally organic compound that can be used as an effective organo-catalyst. Functional groups of captopril make it capable to attach to solid support and acting as promoters in organic transformations. In this work, captopril was attached to the surface of magnetic graphene nitride by employing a linker agent. The synthesized composite efficiently catalyzed two multicomponent reactions including the synthesis of 1,2,3,6-tetrahydropyrimidine and 2-amino-4H-chromene derivatives. A large library of functional targeted products was synthesized in mild reaction conditions. More importantly, this catalyst was stable and magnetically recycled and reused for at least five runs without losing catalytic activity.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Heshmatollah Alinezhad
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
3
|
M J, Joy F, Nizam A, Naidu Krishna SB. Multicomponent Synthesis Strategies, Catalytic Activities, and Potential Therapeutic Applications of Pyranocoumarins: A Comprehensive Review. Chem Biodivers 2023; 20:e202300836. [PMID: 37702294 DOI: 10.1002/cbdv.202300836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Fused coumarins, because of their remarkable biological and therapeutic properties, particularly pyranocoumarins, have caught the interest of synthetic organic chemists, leading to the development of more efficient and environmentally friendly protocols for synthesizing pyranocoumarin derivatives. These compounds are the most promising heterocycles discovered in both natural and synthetic sources, with anti-inflammatory, anti-HIV, antitubercular, antihyperglycemic, and antibacterial properties. This review employed the leading scientific databases Scopus, Web of Science, Google Scholar, and PubMed up to the end of 2022, as well as the combining terms pyranocoumarins, synthesis, isolation, structural elucidation, and biological activity. Among the catalysts employed, acidic magnetic nanocatalysts, transition metal catalysts, and carbon-based catalysts have all demonstrated improved reaction yields and facilitated reactions under milder conditions. Herein, the present review discusses the various multicomponent synthetic strategies for pyranocoumarins catalyzed by transition metal-based catalysts, transition metal-based nanocatalysts, transition metal-free catalysts, carbon-based nanocatalysts, and their potential pharmacological activities.
Collapse
Affiliation(s)
- Jayalakshmi M
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka), 560029, India
| | - Francis Joy
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka), 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka), 560029, India
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, 4000, South Africa
| |
Collapse
|
4
|
Maleki B, Jamshidi A, Peiman S, Housaindokht MR. Tri-vanadium Substituted Dawson-type Heteropolytungstate Nanocomposite (g-C 3N 4/Fe 3O 4@P 2W 15V 3) as a Novel, Green, and Recyclable Nanomagnetic Catalyst in the Synthesis of Tetrahydrobenzo[b]Pyrans. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2184398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/14/2023]
Affiliation(s)
- Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali Jamshidi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Novel hybrid perovskite crystal NH3(CH2)7NH3BiCl5 as a potential catalytic performance and eco-friendly for the synthesis of 3,4-dihydropyrano [3,2-c] chromenes derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
|
6
|
Synthesis, crystal structure and alkaline pathways simulation of K3Na(Mo0.67Cr0.33O4)2 adopting glaserite structure-type. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
|
7
|
Pasuparthy SD, Maiti B. [CMMIM][BF 4 -] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno[4,3- d]pyrido[1,2- a]pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS OMEGA 2022; 7:39147-39158. [PMID: 36340130 PMCID: PMC9631728 DOI: 10.1021/acsomega.2c05015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Herein, we have developed a novel synthetic route for the synthesis of chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one derivatives 8a-q using an acid ionic liquid [CMMIM][BF4 -] 4 via one-pot, three-component synthesis in aqueous ethanol at room temperature. A series of 17 derivatives have been successfully prepared with up to 93% yield. All the synthesized derivatives were well characterized using 1H-NMR, 13C-NMR, and FT-IR spectral techniques. Additionally, the photophysical properties of 12 selected derivatives including molar extinction coefficient (ε), Stokes shift (Δυ̅), and quantum yield (Φ) varying from 0.52095 × 104 to 0.93248 × 104, 4216 to 4668 cm-1, and 0.0088 to 0.0459, respectively, have been determined. Furthermore, the experimental data are supported by density functional theory (DFT) and time-dependent DFT calculations. Theoretical investigations showed a trend similar to experimental results.
Collapse
|
8
|
Maddila S, Kerru N, Jonnalagadda SB. Recent Progress in the Multicomponent Synthesis of Pyran Derivatives by Sustainable Catalysts under Green Conditions. Molecules 2022; 27:6347. [PMID: 36234888 PMCID: PMC9571218 DOI: 10.3390/molecules27196347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrans are one of the most significant skeletons of oxygen-containing heterocyclic molecules, which exhibit a broad spectrum of medicinal applications and are constituents of diverse natural product analogues. Various biological applications of these pyran analogues contributed to the growth advances in these oxygen-containing molecules. Green one-pot methodologies for synthesising these heterocyclic molecules have received significant attention. This review focuses on the recent developments in synthesising pyran ring derivatives using reusable catalysts and emphasises the multicomponent reaction strategies using green protocols. The advantages of the catalysts in terms of yields, reaction conditions, and recyclability are discussed.
Collapse
Affiliation(s)
- Suresh Maddila
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| | - Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru Campus, Bengaluru 561203, Karnataka, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
9
|
Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci Rep 2022; 12:12004. [PMID: 35835941 PMCID: PMC9283471 DOI: 10.1038/s41598-022-16384-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Lanthanoid-containing polyoxometalates (Ln-POMs) have been developed as effective and robust catalysts due to their Lewis acid–base active sites including the oxygen-enriched surfaces of POM and the unique 4f. electron configuration of Ln. As an extension of our interest in Ln-POMs, a series of as-synthesized nanocatalysts K15[Ln(BW11O39)2] (Ln-B2W22, Ln = La, Ce, Nd, Sm, Gd, and Er) synthesized and fully characterized using different techniques. The Ln3+ ion with a big ionic radius was chosen as the Lewis acid center which is sandwiched by two mono-lacunary Keggin [BW11O39]9− units to form Ln-containing sandwiched type cluster. Consequently, the catalytic activity of nanocatalysts with different Ln was examined in the synthesis of bioactive isatin derivatives and compared under the same optimized reaction conditions in terms of yields of obtained products, indicating the superiority of the nano-Gd-B2W22 in the aforementioned simple one-pot reaction. The effects of different dosages of nanocatalyst, type of solvent, reaction time, and reaction temperature in this catalytic system were investigated and the best results were obtained in the presence of 10 mol% of nano-Gd-B2W22 in water for 12 min at the reflux condition.
Collapse
|
10
|
Verma P, Chauhan S, Singh V, Singh S, Srivastava V. Urea hydrogen peroxide-initiated synthesis of pyranopyrazoles through oxidative coupling under base- and metal-free conditions by physical grinding method. Mol Divers 2021; 26:1769-1777. [PMID: 34448984 DOI: 10.1007/s11030-021-10278-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
A novel multicomponent one-pot expeditious synthesis of highly functionalized and pharmaceutically fascinated pyranopyrazoles has been developed. This reaction occurs via tandem Knoevenagel condensation reaction of methyl aryl derivatives, 3-methyl pyrazolone and malononitrile in the presence of urea hydrogen peroxide under the physical grinding method. The present methodology offers several benefits such as available green and cheap starting materials, solvent-free, mild reaction conditions, high atom economy, eco-friendly standards, excellent yields and easy isolation of the products without column chromatographic separation.
Collapse
Affiliation(s)
- Pratibha Verma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Swati Chauhan
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vishal Singh
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
11
|
Sayahi MH, Afrouzandeh Z, Bahadorikhalili S. Cu(OAc)2 Catalyzed Synthesis of Novel Chromeno [4,3-b]Pyrano[3,4-e]Pyridine-6,8-Dione Derivatives via a One-Pot Multicomponent Reaction in Water under Mild Reaction Conditions. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1866037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Saeed Bahadorikhalili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Neetha M, Aneeja T, Afsina CMA, Anilkumar G. An Overview of Ag‐catalyzed Synthesis of Six‐membered Heterocycles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
| | - C. M. A. Afsina
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam, 686 560 Kerala India
| |
Collapse
|
13
|
Daraie M, Lotfian N, Heravi MM, Mirzaei M. Chemoselective synthesis of drug-like pyrrolo[2,3,4-kl]acridin-1-one using polyoxometalate@lanthanoid catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
14
|
Ghanbarian M, Beheshtiha SYS, Heravi MM, Mirzaei M, Zadsirjan V, Lotfian N. A Nano-sized Nd–Ag@polyoxometalate Catalyst for Catalyzing the Multicomponent Hantzsch and Biginelli Reactions. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01739-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
|
15
|
Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C. Heterogeneous Catalysis by Polyoxometalates in Metal–Organic Frameworks. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03439] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maryam Samaniyan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ruhollah Khajavian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081 Ulm, Germany
| |
Collapse
|