1
|
Uthappa UT, Nehra M, Kumar R, Dilbaghi N, Marrazza G, Kaushik A, Kumar S. Trends and prospects of 2-D tungsten disulphide (WS 2) hybrid nanosystems for environmental and biomedical applications. Adv Colloid Interface Sci 2023; 322:103024. [PMID: 37952364 DOI: 10.1016/j.cis.2023.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Recently, 2D layered transition metal dichalcogenides (TMDCs) with their ultrathin sheet nanostructure and diversified electronic structure have drawn attention for various advanced applications to achieve high-performance parameters. Unique 2D TMDCs mainly comprise transition metal and chalcogen element where chalcogen element layers sandwich the transition metal element layer. In such a case, various properties can be enhanced and controlled depending on the targeted application. Among manipulative 2D TMDCs, tungsten disulphide (WS2) is one of the emerging nano-system due to its fascinating properties in terms of direct band gap, higher mobility, strong photoluminescence, good thermal stability, and strong magnetic field interaction. The advancement in characterization techniques, especially scattering techniques, can help in study of opto-electronic properties of 2D TMDCs along with determination of layer variations and investigation of defect. In this review, the fabrication and applications are well summarized to optimize an appropriate WS2-TMDCs assembly according to focused field of research. Here, the scientific investigations on 2D WS2 are studied in terms of its structure, role of scattering techniques to study its properties, and synthesis routes followed by its potential applications for environmental remediation (e.g., photocatalytic degradation of pollutants, gas sensing, and wastewater treatment) and biomedical domain (e.g., drug delivery, photothermal therapy, biomedical imaging, and biosensing). Further, a special emphasis is given to the significance of 2D WS2 as a substrate for surface-enhanced Raman scattering (SERS). The discussion is further extended to commercial and industrial aspects, keeping in view major research gaps in existing research studies.
Collapse
Affiliation(s)
- U T Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA; United State, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
2
|
Akash S, Sivaprakash B, Rajamohan N, Pandiyan CM, Vo DVN. Pesticide pollutants in the environment - A critical review on remediation techniques, mechanism and toxicological impact. CHEMOSPHERE 2022; 301:134754. [PMID: 35490750 DOI: 10.1016/j.chemosphere.2022.134754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 05/28/2023]
Abstract
The excessive and unorganised utilisation of pesticides have posed negative impacts on soil and water at higher levels. Pesticides are a major class of persistent organic compounds with high resistance to natural biodegradation and enhanced tendency to bio accumulate. The severe health hazards imposed on the living organisms hinder the ecosystem and lead to chronic and irreversible health issues. Photocatalytic method is reported as a potential alternative with a variety of techniques and materials that are safer, easier, durable, cost-effective and efficient. Nanomaterials play a key role in this domain due to their versatility. In particular, nanostructured materials of organized shapes and morphological properties have gained enormous attention in research and real-time applications. Specifically, nanomaterials like nanotubes, nanorods and nanowires have unique properties and anisotropic structure that make them more suitable for treating pesticide wastes with photocatalysis. Variety of tuning methods and materials are emerging to enhance the activity of titanium and zinc based nanocatalysts in remediation methods. In the present article, four pesticides, namely, atrazine, chlorpyrifos, paraquat and naphthalene are chosen due to their common occurrence and usage in agricultural applications. These pesticides are highly toxic and need special attention to explore appropriate remediation methods. The report also details the latest innovations reported by several research studies in exploring the potential of specially synthesised nanoparticles for photocatalytic removal of pesticide pollutants from environment. For zinc-based hybrid nanomaterials, the maximum disintegration reported were 99%, 98%, 73.3% and 92.3% for atrazine, chlorpyrifos, paraquat and naphthalene, respectively.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - C Muruga Pandiyan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
3
|
Chinnappa K, Karuna Ananthai P, Srinivasan PP, Dharmaraj Glorybai C. Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58121-58132. [PMID: 35364789 DOI: 10.1007/s11356-022-19917-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, Curcubita maxima leaves are used as a novel source for green synthesis of reduced graphene oxide - silver nanoparticle composite in a single pot. Characterization of the novel phyto source-driven composite was performed by UV-visible spectroscopy, Fourier transform infrared analysis, X-ray diffraction analysis, and field emission scanning electron microscopic methods. The assessment of degradation effect of chlorpyrifos by the synthesized nanocomposite was performed. The photocatalytic activity of the composite was demonstrated through two different processes as adsorption under room temperature and photocatalysis in the presence of sunlight. Different parameters such as pH, time, photocatalyst dose and pesticide concentration were optimized. The adsorption isotherms governing the photocatalytic adsorption process were investigated to predict the adsorption capacity of the synthesized nanocomposite. In addition, the results of antimicrobial activity of the nanocomposite against gram-positive, gram-negative bacteria and antifungal activity were also been found to be highly promising to utilize this composite for the removal of microbial contaminations in wastewater treatment.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, - 600119, Tamil Nadu, India.
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, - 602117, Chennai, Tamil Nadu, India
| | | |
Collapse
|
4
|
Sharma RK, Kaushik B, Yadav S, Rana P, Rana P, Solanki K, Rawat D. Ingeniously designed Silica nanostructures as an exceptional support: Opportunities, potential challenges and future prospects for viable degradation of pesticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113821. [PMID: 34731966 DOI: 10.1016/j.jenvman.2021.113821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Despite significant advancements in modern agricultural practices, efficient handling of pesticides is a must as they are continuously defiling our terrestrial as well as aquatic life. During the last couple of decades, substantial efforts by various research groups have been devoted to find innovative solutions to remove pesticides from our environment in a greener way. In this regard, functionalized silica nanoparticles (NPs) have gained considerable attention of scientific community due to their notable properties such as amenable design, large surface area as well as fine-tunable and uniform pore structures which make them an ideal material for pesticides removal. The present review aims to proffer current scientific progress attained by silica-based nanostructures as an excellent material for effective removal of noxious agrochemicals. Further, a brief discussion on the synthetic strategies as well as intrinsic benefits associated with different morphologies of silica have also been highlighted in this article. It also summarizes the recent reports on silica assisted degradation of pesticides via enzymatic, chemical as well as advanced oxidation protocols. Additionally, it presents a critical analysis of different support materials for decontamination of our ecosystem. The review concludes with potential challenges, their possible solutions along with key knowledge gaps and future research directions for successful deployment of silica supported materials in degradation of pesticides at commercial scale.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Deepti Rawat
- Department of Chemistry, Miranda House College, University of Delhi, New Delhi, 110007, India
| |
Collapse
|
5
|
Nandhini AR, Harshiny M, Gummadi SN. Chlorpyrifos in environment and food: a critical review of detection methods and degradation pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1255-1277. [PMID: 34553733 DOI: 10.1039/d1em00178g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorpyrifos (CP) is a class of organophosphorus (OP) pesticides, which find extensive applications as acaricide, insecticide and termiticide. The use of CP has been indicated in environmental contamination and disturbance in the biogeochemical cycles. CP has been reported to be neurotoxic and has a detrimental effect on immunological and psychological health. Therefore, it is necessary to design and develop effective degradation methods for the removal of CP from the environment. In the past few years, physicochemical (advanced oxidation process) and biological treatment approaches have been widely employed for the pesticide removal. However, the byproducts of this process are more toxic than the parent compound and along with an incomplete degradation of CP. This review focuses on the toxicity of CP, the sources of contamination, degradation pathways, physicochemical, biological, and nano-technology based methods employed for the degradation of CP. In addition, consolidated information on various detection methods and materials used for the detection have been provided in this review.
Collapse
Affiliation(s)
- A R Nandhini
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai-600025, India
| | - M Harshiny
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
6
|
Kong XP, Zhang BH, Wang J. Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6735-6754. [PMID: 34110151 DOI: 10.1021/acs.jafc.1c01091] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pollution related to pesticides has become a global problem due to their low utilization and non-targeting application, and nanotechnology has shown great potential in promoting sustainable agriculture. Nowadays, mesoporous silica-based nanomaterials have garnered immense attention for improving the efficacy and safety of pesticides due to their distinctive advantages of low toxicity, high thermal and chemical stability, and particularly size tunability and versatile functionality. Based on the introduction of the structure and synthesis of different types of mesoporous silica nanoparticles (MSNs), the multiple roles of mesoporous silica in safe pesticide application using nanotechnology are discussed in this Review: (i) as nanocarrier for sustained/controlled delivery of pesticides, (ii) as adsorbent for enrichment or removal of pesticides in aqueous media, (iii) as support of catalysts for degradation of pesticide contaminants, and (iv) as support of sensors for detection of pesticides. Several scientific issues, strategies, and mechanisms regarding the application of MSNs in the pesticide field are presented, with their future directions discussed in terms of their environmental risk assessment, in-depth mechanism exploration, and cost-benefit consideration for their continuous development. This Review will provide critical information to related researchers and may open up their minds to develop new advances in pesticide application.
Collapse
Affiliation(s)
- Xiang-Ping Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Bao-Hua Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Juan Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| |
Collapse
|
7
|
Sadeghi M, Farhadi S, Zabardasti A. Magnetic separable zeolite-type ZSM-5/CdS nanorods/MoS 2 nanoflowers/MnFe 2O 4 quaternary nanocomposites: synthesis and application of sonocatalytic activities. NEW J CHEM 2020. [DOI: 10.1039/d0nj04056h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic zeolite-type ZSM-5/CdS nanorods/MoS2 nanoflowers/MnFe2O4 quaternary nanocomposites were synthesized and used for the sonocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Meysam Sadeghi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | | |
Collapse
|