1
|
Wang Y, Wei D, Li P, Jiang Z, Liu H, Qing C, Wang H. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1680-1688. [PMID: 33196984 DOI: 10.1007/s10646-020-02305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory arsenate reduction from arsenic (As)-bearing minerals into highly mobile arsenite is one of the key mechanisms of As release into groundwater. To detect the microbial diversity and As-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high As groundwater in the Hetao Plain of Inner Mongolia, China, three anaerobic arsenate-reducing bacteria were isolated and arrA and arsC gene-based clone libraries of four in situ groundwater samples were constructed. The strains IMARCUG-11(G-11), IMARCUG-C1(G-C1) and IMARCUG-12(G-12) were phylogenetically belonged to genera Paraclostridium, Citrobacter and Klebsiella, respectively. They could reduce >99% of 1 mM arsenate under anoxic conditions with lactate as a carbon source in 60 h, 72 h and 84 h, respectively. As far as we know, this was the first report of arsenate reduction by genus Paraclostridium. Compared with strain G-11 (arsC) and G-C1 (arsRBC), strain G-12 contained two incomplete ars operons (operon1: arsABC, operon2: arsBC), indicating that these strains might present different strategies to resist As toxicity. Phylogenetic analysis illuminating by the arrA genes showed that in situ arsenate-reducing bacterial communities were diverse and mainly composed of Desulfobacterales (53%, dominated by Geobacter), Betaproteobacteria (12%), and unidentified groups (35%). Based on the arsC gene analysis, the indigenous arsenate-reducing bacterial communities were mainly affiliated with Omnitrophica (88%) and Deltaproteobacteria (11%, dominated by Geobacter and Syntrophobacterales). Results of this study expanded our understanding of indigenous arsenic-reducing bacteria in high As groundwater aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
2
|
Draft Genome Sequence of Klebsiella michiganensis 3T412C, Harboring an Arsenic Resistance Genomic Island, Isolated from Mine Tailings in Peru. GENOME ANNOUNCEMENTS 2017; 5:5/28/e00611-17. [PMID: 28705974 PMCID: PMC5511913 DOI: 10.1128/genomea.00611-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An arsenic resistance genomic island in the bacterium Klebsiella michiganensis 3T412C was isolated from mine tailings from Peru. This genomic island confers adaptation to extreme environments with high concentrations of arsenic. Isolate 3T412C contained a complete set of genes involved in resistance to arsenic. This operon is surrounded by putative genes for resistance to other heavy metals.
Collapse
|
3
|
Zhang W, Chen L, Zhou Y, Wu Y, Zhang L. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure. CHEMOSPHERE 2016; 147:297-304. [PMID: 26766368 DOI: 10.1016/j.chemosphere.2015.12.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Arsenic (As) is well known to be biodiminished along marine food chains. The marine herbivorous fish at a lower trophic level are expected to accumulate more As. However, little is known about how marine herbivorous fish biotransform the potential high As bioaccumulation. Therefore, the present study quantified the biotransformation of two inorganic As species (As(III) and As(V)) in a marine herbivorous fish Siganus fuscescens following dietborne exposure. The fish were fed on As contaminated artificial diets at nominal concentrations of 400 and 1500 μg As(III) or As(V) g(-1) (dry weight) for 21 d and 42 d. After exposure, As concentrations in intestine, liver, and muscle tissues of rabbitfish increased significantly and were proportional to the inorganic As exposure concentrations. The present study demonstrated that both inorganic As(III) and As(V) in the dietborne phases were able to be biotransformed to the less toxic arsenobetaine (AsB) (63.3-91.3% in liver; 79.0%-95.2% in muscle). The processes of As biotransformation in rabbitfish could include oxidation of As(III) to As(V), reduction of As(V) to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to AsB. These results also demonstrated that AsB synthesis processes were diverse facing different inorganic As species in different tissues. In summary, the present study elucidated that marine herbivorous fish had high ability to biotransform inorganic As to the organic forms (mainly AsB), resulting in high As bioaccumulation. Therefore, marine herbivorous fish could detoxify inorganic As in the natural environment.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
4
|
Kuramata M, Sakakibara F, Kataoka R, Abe T, Asano M, Baba K, Takagi K, Ishikawa S. Arsenic biotransformation byStreptomyces sp. isolated from rice rhizosphere. Environ Microbiol 2014; 17:1897-909. [DOI: 10.1111/1462-2920.12572] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Masato Kuramata
- Soil Environment Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| | - Futa Sakakibara
- Organochemicals Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| | - Ryota Kataoka
- Organochemicals Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
- Faculty of Life and Environmental Sciences; University of Yamanashi; 4-4-37 Takeda Koufu Yamanashi 400-8510 Japan
| | - Tadashi Abe
- Soil Environment Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| | - Maki Asano
- Carbon and Nutrient Cycles Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| | - Koji Baba
- Organochemicals Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| | - Kazuhiro Takagi
- Organochemicals Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| | - Satoru Ishikawa
- Soil Environment Division; National Institute for Agro-Environmental Sciences; 3-1-3 Kannondai Tsukuba Ibaraki 305-8604 Japan
| |
Collapse
|
5
|
Rahman MA, Hasegawa H, Lim RP. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. ENVIRONMENTAL RESEARCH 2012; 116:118-35. [PMID: 22534144 DOI: 10.1016/j.envres.2012.03.014] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 05/05/2023]
Abstract
The occurrence, distribution, speciation, and biotransformation of arsenic in aquatic environment (marine and freshwater) have been studied extensively by several research groups during last couple of decades. However, most of those studies have been conducted in marine waters, and the results are available in a number of reviews. Speciation, bioaccumulation, and biotransformation of arsenic in freshwaters have been studied in recent years. Although inorganic arsenic (iAs) species dominates in both marine and freshwaters, it is biotransformed to methyl and organoarsenic species by aquatic organisms. Phytoplankton is considered as a major food source for the organisms of higher trophic levels in the aquatic food chain, and this autotrophic organism plays important role in biotransformation and distribution of arsenic species in the aquatic environment. Bioaccumulation and biotransformation of arsenic by phytoplankton, and trophic transfer of arsenic in marine and freshwater food chains have been important concerns because of possible human health effects of the toxic metalloid from dietary intake. To-date, most of the studies on arsenic biotransformation, speciation, and trophic transfer have focused on marine environments; little is known about these processes in freshwater systems. This article has been reviewed the bioaccumulation, biotransformation, and trophic transfer of arsenic in marine and freshwater food chain.
Collapse
Affiliation(s)
- M Azizur Rahman
- Centre for Environmental Sustainability, School of the Environment, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | | | | |
Collapse
|
6
|
Aksu A, Balkis N, Erşan MS, Müftüoğlu AE, Apak R. Biogeochemical cycle of arsenic and calculating the enrichment factor by using Li element. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2010; 32:303-6. [PMID: 20379841 DOI: 10.1007/s10653-010-9302-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/20/2009] [Indexed: 05/11/2023]
Abstract
In this study, the biogeochemical cycle of arsenic in the Bosporus and the Golden Horn, which have a two-layer stratified structure, was investigated and the dominant feature in this cycle was observed to be the anthropogenic (domestic + industrial) activities. On the contrary, in the rural areas which are far from human activities, such as Iğneada, the seawater-atmosphere interchange can be observed evidently in the periods covering the primary production.
Collapse
Affiliation(s)
- Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Science and Management, Istanbul University, Vefa 34134-00, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
7
|
MIYATAKE M, HAYASHI S. Growth Characteristics and Arsenic Metabolism of an Arsenic Methylating Bacterium. ACTA ACUST UNITED AC 2009. [DOI: 10.4144/rpsj.56.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Abstract
Natural arsenolipids are analogues of neutral lipids, like monoglycerides, glycolipids, phospho- and also phosphonolipids. They have been found in microorganisms, fungi, plants, lichens, in marine mollusks, sponges, other invertebrates, and in fish tissues. This review presented structures of natural arsenolipids (and derivatives), their distribution, biogenesis in algae and invertebrates, synthesis, and also biological activity. Arsenolipids are thought to be end products of arsenate detoxification processes, involving reduction and oxidative methylation and adenosylation. The proposed biogenesis of arsenolipids is based on the natural occurrence of arsenic metabolites, and all the intermediates in the proposed pathway have been identified as natural products of algal origin. Different arseno species are shown to be inhibitors of glycerol kinase, bovine carbonic anhydrase, and also is an effective therapy for acute promyelocytic leukemia, and there has been promising activity noted in other hematologic and solid tumors. Arsonoliposomes demonstrated high anti-trypanosomal activity against Trypanosoma brucei and inhibit growth of some types of cancer cells (HL-60,C6 and GH3).
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Organic Chemistry, P.O. Box 39231, Hebrew University, Jerusalem 91391, Israel.
| | | |
Collapse
|
9
|
Bentley R, Chasteen TG. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 2002; 66:250-71. [PMID: 12040126 PMCID: PMC120786 DOI: 10.1128/mmbr.66.2.250-271.2002] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important.
Collapse
Affiliation(s)
- Ronald Bentley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
10
|
Kuroiwa T, Yoshihiko I, Ohki A, Naka K, Maeda S. Tolerance, bioaccumulation and biotransformation of arsenic in freshwater prawn (Macrobrachium rosenbergii). Appl Organomet Chem 1995. [DOI: 10.1002/aoc.590090704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Kuroiwa T, Ohki A, Naka K, Maeda S. Biomethylation and biotransformation of arsenic in a freshwater food chain: Green alga (chlorella vulgaris)?shrimp (neocaridina denticulata)?killifish (oryzias iatipes). Appl Organomet Chem 1994. [DOI: 10.1002/aoc.590080407] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|