1
|
Bima DN, Firdaus SN, Darmawan A, Nugraha MY. Examining the impact of hydroxy group position on antibacterial activity of copper complexes derived from vanillin-based Schiff bases: Experimental and computational analysis. CHEMOSPHERE 2025; 371:144063. [PMID: 39756705 DOI: 10.1016/j.chemosphere.2025.144063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The positioning of the hydroxy group plays a crucial role in the coordination of Schiff bases with copper ions and their antibacterial effectiveness. This potential is an area of interest for future exploration, although no specific studies have been conducted. This study aims to reveal the significance of the positioning of the hydroxy group in the ability of the Schiff base to coordinate with copper ion and its antibacterial efficacy against E. coli and S. aureus. By utilizing ortho-vanillin and para-vanillin as precursors, we successfully synthesized Schiff bases HL1 (ortho) and L2 (para), which were confirmed through Fourier Transform Infrared (FT-IR) and Nuclear Magnetic Resonance (NMR) analyses. HL1 forms the CuL1 complex as a bidentate ligand with N, O donor atoms, while L2 only provides a single N donor atom, forming the CuL2 complex but retaining a free hydroxy group. Crystallographic analysis revealed a tetragonal crystal system for the Schiff base and orthorhombic for the complex. Electronic transition analysis supported by Density Functional Theory (DFT) studies indicated a distorted square plane geometry for the CuL1 and CuL2 complexes. The in vitro antibacterial assessment against E. coli and S. aureus revealed that the CuL1 and CuL2 complexes exhibited significantly better activity than Schiff bases HL1 and L2. Moreover, CuL2 exhibits greater bioactivity against both bacterial strains compared to CuL1. This difference could be attributed to a free hydroxy group, supported by computational analysis. Our findings suggest that the formation of complexes and the presence of free hydroxy groups may enhance the antibacterial activity of the drug.
Collapse
Affiliation(s)
- Damar Nurwahyu Bima
- Department of Chemistry, Diponegoro University, Tembalang, Semarang, 50275, Indonesia.
| | | | - Adi Darmawan
- Department of Chemistry, Diponegoro University, Tembalang, Semarang, 50275, Indonesia
| | | |
Collapse
|
2
|
Nayab S, Jan K, Kim SH, Kim SH, Shams DF, Son Y, Yoon M, Lee H. Insight into the inhibitory potential of metal complexes supported by ( E)-2-morpholino- N-(thiophen-2-ylmethylene)ethanamine: synthesis, structural properties, biological evaluation and docking studies. Dalton Trans 2024; 53:11295-11309. [PMID: 38898716 DOI: 10.1039/d4dt00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 μM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.
Collapse
Affiliation(s)
- Saira Nayab
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir (U) 18050, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Seung-Hyeon Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sa-Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dilawar Farhan Shams
- Department of Environmental Chemistry, Abdul Wali Khan University Maradan, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Younghu Son
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Elebiju OF, Oduselu GO, Ogunnupebi TA, Ajani OO, Adebiyi E. In Silico Design of Potential Small-Molecule Antibiotic Adjuvants against Salmonella typhimurium Ortho Acetyl Sulphydrylase Synthase to Address Antimicrobial Resistance. Pharmaceuticals (Basel) 2024; 17:543. [PMID: 38794114 PMCID: PMC11124240 DOI: 10.3390/ph17050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 05/26/2024] Open
Abstract
The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyridoxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from the PubChem database were carried out using AutoDock vina, while a post-screening analysis was carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs 118614633, 135715279, and 155773276, possessing binding affinities of -9.1, -8.9, and -8.8 kcal/mol, respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to 187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the lowest binding energy (-9.3 kcal/mol) and performed better than its parent compound 155773276. Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a synergistic effect and consequently increases the binding energy. The stability of the best hit and optimized compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and SASA plots generated from a molecular dynamics simulation. The MD simulation results were also used to monitor how the introduction of new functional groups of optimized compounds contributes to the stability of ligands at the target active site. The improved binding affinity of these compounds compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good inhibitors of StOASS, and hence, possible antimicrobial adjuvants.
Collapse
Affiliation(s)
- Oluwadunni F. Elebiju
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Ogun State, Nigeria
| | - Gbolahan O. Oduselu
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
| | - Temitope A. Ogunnupebi
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Nayab S, Alam A, Ahmad N, Khan SW, Khan W, Shams DF, Shah MI, Ateeq M, Shah SK, Lee H. Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS OMEGA 2023; 8:17620-17633. [PMID: 37251197 PMCID: PMC10210233 DOI: 10.1021/acsomega.2c08266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Novel thiophene-derived Schiff base ligand DE, where DE is (E)-N1,N1-diethyl-N2-(thiophen-2-ylmethylene)ethane-1,2-diamine, and the corresponding M(II) complexes, [M(DE)X2] (M = Cu or Zn, X = Cl; M = Cd, X = Br), were prepared and structurally characterized. X-ray diffraction studies revealed that the geometry around the center of the M(II) complexes, [Zn(DE)Cl2] and [Cd(DE)Br2], could be best described as a distorted tetrahedral. In vitro antimicrobial screening of DE and its corresponding M(II) complexes, [M(DE)X2], was performed. The complexes were more potent and showed higher activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, fungi Candida albicans, and protozoa Leishmania major compared to the ligand. Among the studied complexes, [Cd(DE)Br2] exhibited the most promising antimicrobial activity against all the tested microbes compared to its analogs. These results were further supported by molecular docking studies. We believe that these complexes may significantly contribute to the efficient designing of metal-derived agents to treat microbial infections.
Collapse
Affiliation(s)
- Saira Nayab
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Aftab Alam
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Nasir Ahmad
- Department
of Chemistry Islamia College University
Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Waliullah Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Dilawar Farhan Shams
- Department
of Environmental Sciences, Abdul Wali Khan
University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ishaq
Ali Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ateeq
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Said Karim Shah
- Department
of Physics, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
5
|
Li M, Qiu XY, Zheng ZX, Wu YJ. Syntheses and Crystal Structures of Copper(II) and Zinc(II) Complexes Derived from 5-Bromo-2-((Cyclopropylimino)Methyl)Phenol with Antibacterial Activity. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Višnjevac A, Araškov JB, Nikolić M, Bojić-Trbojević Ž, Pirković A, Dekanski D, Mitić D, Blagojević V, Filipović NR, Todorović TR. Zn(II) complexes with pyridyl-based 1,3-selen/thiazolyl-hydrazones: a comparative study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
7
|
Synthesis, structural elucidation, in vitro antibacterial activity, DFT calculations, and molecular docking aspects of mixed-ligand complexes of a novel oxime and phenylalanine. Bioorg Chem 2022; 121:105685. [DOI: 10.1016/j.bioorg.2022.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
|