1
|
Maqsood MH, Khera RA, Mehmood RF, Akram SJ, Al-Zaqri N, Ibrahim MAA, Noor S, Waqas M. End-cap modeling on the thienyl-substituted benzodithiophene trimer-based donor molecule for achieving higher photovoltaic performance. J Mol Graph Model 2023; 124:108550. [PMID: 37331259 DOI: 10.1016/j.jmgm.2023.108550] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Despite the substantial advancements in organic solar cells (OSCs), the best devices still have quite low efficiencies due to less focus on donor molecules. With the intention to present efficient donor materials, seven small donor molecules (T1-T7) were devised from DRTB-T molecule by using end-capped modeling. Newly designed molecules exhibited remarkable improved optoelectronic properties such as less band gap (from 2.00 to 2.23 eV) than DRTB-T having band gap of 2.57 eV. Similarly, a significant improvement in λmax values was noticed in designed molecules in gaseous medium (666 nm-738 nm) and solvent medium (691 nm-776 nm) than DRTB-T having λmax values at 568 nm and 588 nm in gas and solvent phase respectively. Among all molecules, T1 and T3 exhibited significant improvement in optoelectronic properties such as narrow band gap, lower excitation energy, higher λmax values and lower electron reorganization energy as compared to pre-existed DRTB-T molecule. The better functional ability of T1-T7 is also suggested by an improvement in open circuit voltage (Voc) of designed structures (1.62 eV-1.77 eV) as compared to R (1.49 eV) when PC61BM is used as an acceptor. So, all our newly derived donors can be employed in the active layer of organic solar cells to manufacture efficient OSCs.
Collapse
Affiliation(s)
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Sadia Noor
- Department of Chemistry, University of Hohenheim Stuttgart, 70599, Germany
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Adly OMI, Taha A, Fahmy SA, Ibrahim MA. TD-DFT calculations, dipole moments, and solvatochromic properties of 2-aminochromone-3-carboxaldehyde and its hydrazone derivatives. RSC Adv 2023; 13:26587-26603. [PMID: 37674487 PMCID: PMC10478642 DOI: 10.1039/d3ra05081e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
2-Aminochromone-3-carboxaldehyde (ACC) and its hydrazones (ACMHCA and ACMNPHTCA) with semicarbazide hydrochloride and N-phenylthiosemicarbazide were synthesized and characterized by elemental analysis and spectral studies. The solvatochromic behavior of the title compounds in various solvents showed distinct bathochromic shifts on going from nonpolar to polar solvents, suggesting intramolecular-charge-transfer (ICT) solute-solvent interactions. The ground and excited state dipole moments of ACC, ACMHCA, and ACMNPHTCA were determined experimentally by the solvatochromic shift method using the Bilot-Kawski, Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet functions, and a microscopic Reichardt's solvent polarity parameter (ENT). All the investigated molecules showed a substantial increase in the dipole moment upon excitation to the emitting state. The experimental results were generally consistent with the values obtained by the TD-DFT, B3LYP/6-311G++(d,p) method. Molecular electrostatic potential (MEP) mapping and natural charge and natural bonding orbital (NBO) analysis were performed and the results were discussed. The 1H NMR chemical shifts of the prepared compounds were simulated by the gage independent atomic orbital (GIAO) method and compared with their experimental chemical shift values. The biological activity data were correlated with the frontier molecular orbitals. The photovoltaic behavior of the title compounds showed there was sufficient electron injection.
Collapse
Affiliation(s)
- Omima M I Adly
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - Ali Taha
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - Shery A Fahmy
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - Magdy A Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| |
Collapse
|
3
|
Alshater H, Al-Sulami AI, Aly SA, Abdalla EM, Sakr MA, Hassan SS. Antitumor and Antibacterial Activity of Ni(II), Cu(II), Ag(I), and Hg(II) Complexes with Ligand Derived from Thiosemicarbazones: Characterization and Theoretical Studies. Molecules 2023; 28:2590. [PMID: 36985561 PMCID: PMC10058203 DOI: 10.3390/molecules28062590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Four new complexes (Ni2+, Cu2+, Ag+, and Hg2+) were prepared from the ligand N-(4-chlorophenyl)-2-(phenylglycyl)hydrazine-1-carbothioamide (H2L). Analytical and spectroscopic techniques were used to clarify the structural composition of the new chelates. In addition, all chelates were tested against bacterial strains and the HepG2 cell line to determine their antiseptic and carcinogenic properties. The Ni(II) complex was preferable to the other chelates. Molecular optimization revealed that H2L had the highest reactivity, followed by Hg-chelate, Ag-chelate, Ni-chelate, and Cu-chelate. Moreover, molecular docking was investigated against two different proteins: the ribosyltransferase enzyme (code: 3GEY) and the EGFR tyrosine kinase receptor (code: 1m17).
Collapse
Affiliation(s)
- Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology University Hospital, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Ahlam I. Al-Sulami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32958, Egypt;
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, Alkharga 72511, Egypt;
| | - Mohamed A. Sakr
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez University, Suez 41522, Egypt
| | - Safaa S. Hassan
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| |
Collapse
|
4
|
Vyazovkin S. Comments on multiple publications reporting single heating rate kinetics. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sergey Vyazovkin
- Department of Chemistry University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|