1
|
Amadi CK, Karimpour T, Jafari M, Peng Z, Van Gerven D, Brune V, Hartl F, Siaj M, Mathur S. Synthesis and theoretical study of a mixed-ligand indium(III) complex for fabrication of β-In 2S 3 thin films via chemical vapor deposition. Dalton Trans 2024; 53:9874-9886. [PMID: 38805202 DOI: 10.1039/d4dt00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Two new heteroleptic indium aminothiolate compounds [InClSC2H4N(Me)SC2H4]3[1] and [InSC2H4N(Me)SC2H4(C8H5F3NO)] [2] were synthesized by in situ salt metathesis reaction involving indium trichloride, aminothiol, and N,O-β-heteroarylalkenol ligands. The complexes were subsequently purified and thoroughly characterized by nuclear magnetic resonance (NMR) analysis, elemental studies, mass spectroscopy, and X-ray diffraction single crystal analysis that showed a trigonal bipyramidal coordination of In(III) in both complexes. Thermogravimetric analysis of [1] revealed a multistep decomposition pathway and the formation of In2S3 at 350 °C, which differed from the pattern of [2] due to the lower thermal stability of [1]. Compound [2] exhibited a three-step decomposition process, resulting in the formation of In2S3 at 300 °C. The Chemical Vapor Deposition (CVD) experiment involving compound [2] was conducted on the FTO substrate, resulting in the production of singular-phase In2S3 deposits. A comprehensive characterization of these deposits, including crystal structure analysis via X-ray diffraction (XRD), and surface topography examination through scanning electron microscopy (SEM) has been completed. The presence of In-S units was also supported by the Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS) of the as-deposited films. Moreover, the electronic structure and thermal properties of compound [2] were investigated through DFT calculations. Electron density localization analysis revealed that the highest occupied molecular orbital (HOMO) exhibited dense concentration at the aminothiolate moiety of the complex, while the lowest unoccupied molecular orbital (LUMO) predominantly resided at the N,O-β-heteroarylalkenolate ligand. Furthermore, our computational investigation has validated the formation of indium sulfide by elucidating an intermediate state, effectively identified through EI-MS analysis, as one of the plausible pathways for obtaining In2S3. This intermediate state comprises the aminothiolate ligand (LNS) coordinated with indium metal.
Collapse
Affiliation(s)
- Chijioke Kingsley Amadi
- University of Cologne, Department of Chemistry, Institute of Inorganic Chemistry, Greinstr. 6, 50939 Cologne, Germany.
| | - Touraj Karimpour
- University of Cologne, Department of Chemistry, Institute of Inorganic Chemistry, Greinstr. 6, 50939 Cologne, Germany.
| | - Maziar Jafari
- Université du Québec à Montréal, Department of Chemistry and Biochemistry, Montréal, QC H3C 3P8, Canada
| | - Zhiyuan Peng
- Université du Québec à Montréal, Department of Chemistry and Biochemistry, Montréal, QC H3C 3P8, Canada
| | - David Van Gerven
- University of Cologne, Department of Chemistry, Institute of Inorganic Chemistry, Greinstr. 6, 50939 Cologne, Germany.
| | - Veronika Brune
- University of Cologne, Department of Chemistry, Institute of Inorganic Chemistry, Greinstr. 6, 50939 Cologne, Germany.
| | - Fabian Hartl
- University of Cologne, Department of Chemistry, Institute of Inorganic Chemistry, Greinstr. 6, 50939 Cologne, Germany.
| | - Mohamed Siaj
- Université du Québec à Montréal, Department of Chemistry and Biochemistry, Montréal, QC H3C 3P8, Canada
| | - Sanjay Mathur
- University of Cologne, Department of Chemistry, Institute of Inorganic Chemistry, Greinstr. 6, 50939 Cologne, Germany.
| |
Collapse
|
2
|
Farzia, Rehman S, Ikram M, Khan A, Khan R, Sinnokrot MO, Khan M, AlAsmari AF, Alasmari F, Alharbi M. Synthesis, characterization, Hirshfeld surface analysis, antioxidant and selective β-glucuronidase inhibitory studies of transition metal complexes of hydrazide based Schiff base ligand. Sci Rep 2024; 14:515. [PMID: 38177189 PMCID: PMC10766943 DOI: 10.1038/s41598-023-49893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
The synthesis of N'-[(4-hydroxy-3-methoxyphenyl)methylidene] 2-aminobenzohydrazide (H-AHMB) was performed by condensing O-vanillin with 2-aminobenzohydrazide and was characterized by FTIR, high resolution ESI(+) mass spectral analysis, 1H and 13C-NMR. The compound H-AHMB was crystallized in orthorhombic Pbca space group and studied for single crystal diffraction analysis. Hirshfeld surface analysis was also carried out for identifying short interatomic interactions. The major interactions H…H, O…H and C…H cover the Hirshfeld surface of H-AHMB. The metal complexes [M(AHMB)n] where M = Co(II), Ni(II), Cu(II) and Zn(II) were prepared from metal chlorides and H-AHMB ligand. The bonding was unambigously assigned using FTIR and UV/vis analysis. The synthesized ligand H-AHMB and its metal complexes were studied for β-glucuronidase enzyme inhibition. Surprisingly the metal complexes were found more active than the parent ligand and even the standard drug. Zn-AHMB shown IC50 = 17.3 ± 0.68 µM compared to IC50 = 45.75 ± 2.16 µM shown by D-saccharic acid-1,4-lactone used as standard. The better activity by Zn-AHMB implying zinc based metallodrug for the treatment of diseases associated with β-glucuronidase enzyme. The DPPH radical scavenging activities were also studied for all the synthesized compounds. The Co-AHMB complex with IC50 = 98.2 ± 1.78 µM was the only candidate to scavenge the DPPH free radicals.
Collapse
Affiliation(s)
- Farzia
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadia Rehman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Adnan Khan
- School of Physics & the Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Rizwan Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mutasem Omar Sinnokrot
- College of Arts and Sciences, American University of Iraq-Baghdad, Airport Road Baghdad, Baghdad, Iraq
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Moharramnejad M, Malekshah RE, Ehsani A, Gharanli S, Shahi M, Alvan SA, Salariyeh Z, Azadani MN, Haribabu J, Basmenj ZS, Khaleghian A, Saremi H, Hassani Z, Momeni E. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci 2023; 316:102908. [PMID: 37148581 DOI: 10.1016/j.cis.2023.102908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal-organic frameworks (MOFs), also called porous coordination polymers, represent a class of crystalline porous materials made up of organic ligands and metal ions/metal clusters. Herein, an overview of the preparation of different metal-organic frameworks and the recent advances in MOF-based stimuli-responsive drug delivery systems (DDSs) with the drug release mechanisms including pH-, temperature-, ion-, magnetic-, pressure-, adenosine-triphosphate (ATP)-, H2S-, redox-, responsive, and photoresponsive MOF were rarely introduced. The combination therapy containing of two or more treatments can be enhanced treatment effectiveness through overcoming limitations of monotherapy. Photothermal therapy (PTT) combined with chemotherapy (CT), chemotherapy in combination with PTT or other combinations were explained to overcome drug resistance and side effects in normal cells as well as enhancing the therapeutic response. Integrated platforms containing of photothermal/drug-delivering functions with magnetic resonance imaging (MRI) properties exhibited great advantages in cancer therapy.
Collapse
Affiliation(s)
- Mojtaba Moharramnejad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran; Young Researcher and Elite Group, University of Qom, Qom, Iran
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Sajjad Gharanli
- Department of Chemical Engineering, Faculty of Engineering, Qom University, Qom, Iran
| | - Mehrnaz Shahi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Saeed Alvani Alvan
- Bachelor of Chemical Engineering, Azad Varamin University, Peshwa branch, Iran
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Saremi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Elham Momeni
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
New Cu(II), Mn(II) and Mn(III) Schiff base complexes cause noncovalent interactions: X-ray crystallography survey, Hirshfeld surface analysis and molecular simulation investigation against SARS-CoV-2. J Mol Struct 2023; 1278:134857. [PMID: 36619309 PMCID: PMC9811130 DOI: 10.1016/j.molstruc.2022.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
In this study, polynuclear Cu(II) complex (1), Mn(II) and Mn(III) complex (2) have been prepared with a Schiff base ligand derived from 2-Hydroxy-3-methoxybenzaldehyde with 2-amino-2-methyl-1-propanol. The compounds were characterized by elemental analysis, FT-IR, and UV-Vis spectroscopy. The molecular and crystal structures of (1-2) were determined by the single-crystal x-ray diffraction technique. It turned out that Cu(II) complex (1) forms an S4 -symmetrical tetrameric cage structure, with square-planar coordinated Cu and bridging O atoms at the vertexes of the approximate cube. In the crystal structure of 1, there are large channels along the c-axis, between the tetramers; the solvent- DMSO molecules, occupies these channels. In turn, the complex (2) creates a centrosymmetric trimeric structure, with three octahedrally coordinated Mn ions bridged by O atoms from ligand molecules and acetate ions. The electrochemical behavior studies of the complexes in DMSO displayed the electronic effects of the groups on the redox potential. The redox behavior of Schiff base (1) and (2) complexes included quasi -reversible and irreversible voltammograms, respectively. Intermolecular interactions in the solid states were studied by Hirshfeld surface analysis. These studies provide a comprehensive description of these inter-contact exchanges using an attractive graphical representation using Hirshfeld surfaces and fingerprint plots, along with enrichment ratios. Furthermore, assessment of the inhibitory effect against coronavirus (main protease SARS-CoV-2) was performed by a molecular docking study for both complexes (1 and 2). Both complexes showed a good affinity for CoV-2 for PDB protein ID: 6M03 and 6Y2F.
Collapse
|