1
|
Watson GJ, White S, Gobert S, Lepoint G, Sturaro N, Richir J. Trace element contamination biomonitoring: A comparative study between the polychaetes Alitta virens and Hediste diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125116. [PMID: 39401558 DOI: 10.1016/j.envpol.2024.125116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Trace elements (TEs) remain of significant toxicological concern as many are critical for global decarbonisation. TEs accumulate in sediments so benthic polychaetes (e.g. Hediste diversicolor and Alitta virens) are highly relevant for ecotoxicology. However, ecological/biological differences could influence TE accumulation and biomonitoring suitability. Exploiting multiple sympatric populations (Solent, UK), we measure sediment and tissue concentrations generating EFs (enrichment factors), AEIs (Adverse Effects Indexes) and tissue bioaccumulation factors. We also assess stable isotope compositions to elucidate diet influences. Despite diverse anthropogenic activity in the Solent, the majority of TEs present low levels of sediment contamination at the sites. For Ni, Pb and As, a combination of mean AEIs >1 and some sediment concentrations exceeding SQVs (Sediment Quality Values) indicate a slight toxicological risk. For Cu and Hg, high EFs and AEI scores confirm they are the greatest risk, thus requiring source identification/control. However, only mean As tissue concentrations reflect contaminated sites, therefore, identifying the As-source(s) is also a priority. Sediment and tissue concentration relationships were generally negative and not significant for both species. Although a significant negative relationship for Cd for A. virens requires further investigation, the lack of evidence for TE bioaccumulation from sediment may limit both species' biomonitoring suitability for low-contamination sites. Species differences in tissue concentration were also TE specific: H. diversicolor had significantly higher concentrations for Ag, Cu, Hg, Ni and Zn, whilst the reverse was true for Cd, Fe, Cr and As. Whilst ecological differences and that feeding sources are site and species-specific (as evidenced by C, N and S stable isotopes analysis) cannot be ignored, the diverse tissue concentrations strongly suggest different TE regulation strategies per species. Together these data will be important for ecotoxicologists and regulators to select the 'best' polychaete biomonitor and assess TE toxicity under future global decarbonisation trajectories for TE inputs.
Collapse
Affiliation(s)
- G J Watson
- Institute of Marine Sciences, School of Environment and Life Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK.
| | - S White
- Centre for Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 0HT, UK
| | - S Gobert
- Laboratory of Oceanology, UR FOCUS, Allée du six août, 13, University of Liège, 4000, Liège, Belgium; STARESO SAS, Pointe Revellata, BP 33, F-20260, Calvi, France
| | - G Lepoint
- Laboratory of Trophic and Isotope Ecology, UR FOCUS, University of Liège, B6C, Allée du six août, 13, 4000, Liège, Belgium
| | - N Sturaro
- Laboratory of Trophic and Isotope Ecology, UR FOCUS, University of Liège, B6C, Allée du six août, 13, 4000, Liège, Belgium
| | - J Richir
- SciSca SRL, 5330, Maillen, Belgium
| |
Collapse
|
2
|
Córdoba-Tovar L, Marrugo-Negrete J, Barón PR, Díez S. Drivers of biomagnification of Hg, As and Se in aquatic food webs: A review. ENVIRONMENTAL RESEARCH 2022; 204:112226. [PMID: 34717950 DOI: 10.1016/j.envres.2021.112226] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 05/09/2023]
Abstract
Biomagnification of trace elements is increasingly evident in aquatic ecosystems. In this review we investigate the drivers of biomagnification of mercury (Hg), arsenic (As) and selenium (Se) in aquatic food webs. Despite Hg, As and Se biomagnify in food webs, the biomagnification potential of Hg is much higher than that of As and Se. The slope of trophic increase of Hg is consistent between temperate (0.20), tropical (0.22) and Arctic (0.22) ecosystems. Se exerts a mitigating role against Hg toxicity but desired maximum and minimum concentrations are unknown. Environmental (e.g. latitude, temperature and physicochemical characteristics) and ecological factors (e.g. trophic structure composition and food zone) can substantially influence the biomagnification process these metal (oids). Besides the level of bioaccumulated concentration, biomagnification depends on the biology, ecology and physiology of the organisms that play a key role in this process. However, it may be necessary to determine strictly biological, physiological and environmental factors that could modulate the concentrations of As and Se in particular. The information presented here should provide clues for research that include under-researched variables. Finally, we suggest that biomagnification be incorporated into environmental management policies, mainly in risk assessment, monitoring and environmental protection methods.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Universidad Tecnólogica del Chocó, Facultad de Ciencias Naturales, Grupo de Investigación Recursos Naturales y Toxicología Ambiental, Quibdó, Chocó, A.A 292, Colombia; Universidad de Córdoba, Cra 6 # 76 - 103, Montería, 230002, Córdoba, Colombia
| | | | - Pablo Ramos Barón
- Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Transversal 4#42-00, Bogotá, D.C, Colombia
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
3
|
O'Mara K, Fry B, Burford M. Benthic-pelagic mixing of trace elements in estuarine food webs. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105511. [PMID: 34749254 DOI: 10.1016/j.marenvres.2021.105511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Trace element accumulation pathways are important in many ecological and toxicological studies on aquatic organisms, yet these pathways are often poorly understood. To study the influence of diet and environment on the trace element composition of species within estuarine food webs, we performed a community level assessment of 28 trace elements (including major and minor elements) in common fish and prawn taxa across four estuaries, and in fish, prawn, and other invertebrate taxa within a single estuary. Despite sediment substrates from the four estuaries having distinctly different geochemical compositions, food web samples showed no separation by estuary, but clear separation by taxa. Grouping of taxa by trace elements was related to feeding ecology, with pelagic taxa separated from benthic taxa, and mixed feeding by generalist taxa. Arsenic and selenium were more concentrated in benthic fish, while aluminium, barium, copper, iron, manganese, vanadium, and zinc were more concentrated in pelagic fish. Trophic level did not appear to influence trace element composition. Previous laboratory studies have shown that food sources influence trace element concentrations in marine taxa and this study confirms that this also occurs in natural food webs. These results improve our understanding of the dominant importance of diet and physiology in controlling the trace element composition of species within estuarine food webs.
Collapse
Affiliation(s)
- Kaitlyn O'Mara
- Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Brisbane, Australia.
| | - Brian Fry
- Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Brisbane, Australia
| | - Michele Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Rd, Nathan, Brisbane, Australia
| |
Collapse
|
4
|
Du S, Zhou Y, Zhang L. The potential of arsenic biomagnification in marine ecosystems: A systematic investigation in Daya Bay in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145068. [PMID: 33592468 DOI: 10.1016/j.scitotenv.2021.145068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, we systematically investigated the bioaccumulation and trophic transfer of arsenic (As) in a typical semi-enclosed gulf, Daya Bay. Ten categories of organisms and environmental samples for As, δ13C, and δ15N analyses were collected from 14 sampling sites in all four seasons. The results demonstrated that As concentrations in the organisms and environmental samples were within the normal range of As levels in other uncontaminated marine ecosystems. Arsenic concentrations were generally lower in the pelagic organisms than in the benthic organisms. Arsenic concentrations in the organisms at higher trophic levels (fish, crabs, shrimp, and cephalopods) were lower in summer and higher in winter, while As in the environments was stable in all seasons. The results of δ13C and δ15N analysis indicated that this ecosystem had a marine-derived food web with approximately 3.5 trophic levels. The positive correlation of As and δ15N in the organisms demonstrated that As was biomagnified along trophic transfer in the whole gulf food web in winter and spring. Specifically, As was biomagnified in the benthic food chains in all four seasons and in the pelagic food chains in winter and spring. These trends were consistent with the analysis of As transfer among the categories within the empirical food web. The trophic magnification factors (TMFs) of As were generally higher among the benthic categories than the pelagic categories. In addition, As transfer from stomach content to muscle was positively correlated to δ13C in fish, suggesting that As transfer was enhanced by a benthic habit. These results demonstrated that As could be biomagnified in marine food webs for specific organism compositions and seasonal variations, and a benthic habit was an important promoter for As biomagnification. Therefore, this study partially explained previous investigations in which As trophic transfers were diverse among marine ecosystems.
Collapse
Affiliation(s)
- Sen Du
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
5
|
Gajdosechova Z, Palmer CH, Dave D, Jiao G, Zhao Y, Tan Z, Chisholm J, Zhang J, Stefanova R, Hossain A, Mester Z. Arsenic speciation in sea cucumbers: Identification and quantitation of water-extractable species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115190. [PMID: 32688077 DOI: 10.1016/j.envpol.2020.115190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
With the constant quest for new sources of superfoods to supplement the largely nutrient deficient diet of the modern society, sea cucumbers are gaining increasing popularity. Three species of sea cucumbers, Cucumaria frondosa, Apostichopus californicus and Apostichopusjaponicus were collected from three geographical regions, Atlantic and Pacific coast of Canada and Yellow sea/ East China sea in China, respectively. These organisms were sectioned into parts (body wall, tentacles, internal organ, skin and muscle) and analysed for total arsenic (As) by inductively coupled plasma mass spectrometry (ICP-MS) and As species by high-performance liquid chromatography (HPLC) coupled to ICP-MS. Normal and reversed sequential extractions were optimised to address As distribution between lipids (polar and non-polar) and water-extractable fractions. Two extraction methods for water-extractable As were compared in terms of the number and the amount of extracted species. The results revealed that total As concentration and As species distribution varies significantly between sea cucumbers species. Total As in studied body parts ranged between 2.8 ± 0.52 and 7.9 ± 1.2 mg kg-1, with an exception of the muscle tissue of A. californicus, where it reached to 36 ± 3.5 mg kg-1. Arsenobetaine (AsB) was the most abundant As species in A. californicus and A.japonicus, however, inorganic As represented over 70% of total recovered As in the body parts of C. frondosa. Arsenosugars-328 and 482 were found in all studied body parts whereas arsenosugar-408 was only found in the skin of A. californicus. This is the first time that such a variation in As species distribution between sea cucumber species has been shown.
Collapse
Affiliation(s)
- Zuzana Gajdosechova
- Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Canada.
| | - Calvin H Palmer
- Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Canada
| | - Deepika Dave
- Centre for Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, NFL, Canada
| | - Guangling Jiao
- Canadian Sea Cucumber Processors Association, NS, Canada
| | - Yanfang Zhao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jeffrey Chisholm
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Charlottetown, PE, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Roumiana Stefanova
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Zoltan Mester
- Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Canada
| |
Collapse
|
6
|
Chen L, Wu H, Zhao J, Zhang W, Zhang L, Sun S, Yang D, Cheng B, Wang Q. The role of GST omega in metabolism and detoxification of arsenic in clam Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:9-18. [PMID: 30170209 DOI: 10.1016/j.aquatox.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The major hazard of arsenic in living organisms is increasingly being recognized. Marine mollusks are apt to accumulate high levels of arsenic, but knowledge related to arsenic detoxification in marine mollusks is still less than sufficient. In this study, arsenic bioaccumulation as well as the role of glutathione S-transferase omega (GSTΩ) in the process of detoxification were investigated in the Ruditapes philippinarum clam after waterborne exposure to As(III) or As(V) for 30 days. The results showed that the gills accumulated significantly higher arsenic levels than the digestive glands. Arsenobetaine (AsB) and dimethylarsenate (DMA) accounted for most of the arsenic found, and monomethylarsonate (MMA) can be quickly metabolized. A subcellular distribution analysis showed that most arsenic was in biologically detoxified metal fractions (including metal-rich granules and metallothionein-like proteins), indicating their important roles in protecting cells from arsenic toxicity. The relative mRNA expressions of two genes encoding GSTΩ were up-regulated after arsenic exposure, and the transcriptional responses were more sensitive to As(III) than As(V). The recombinant GSTΩs exhibited high activities at optimal conditions, especially at 37 °C and pH 4-5, with an As(V) concentration of 60 mM. Furthermore, the genes encoding GSTΩ significantly enhance the arsenite tolerance but not the arsenate tolerance of E. coli AW3110 (DE3) (ΔarsRBC). It can be deduced from these results that GSTΩs play an important role in arsenic detoxification in R. philippinarum.
Collapse
Affiliation(s)
- Lizhu Chen
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Wei Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Shan Sun
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Bo Cheng
- Aquatic Products Quality and Standards Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
7
|
Zhang W, Wang WX. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:594-601. [PMID: 29100693 DOI: 10.1016/j.scitotenv.2017.10.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the arsenic (As) biokinetics and bioavailability in two deposit-feeding invertebrates (clams Gafrarium tumidum and polychaetes Nereis succinea) were quantified. Radiotracer techniques were applied to measure the dissolved uptake rate, dietary assimilation efficiency and efflux of As by the clams and polychaetes. Simultaneously, arsenic species analysis was conducted to examine the As biotransformation following dietary uptake. The radiotracer results showed that the uptake rate constant and efflux rate constant were 0.068L/g/d and 0.07d-1, and 0.173L/g/d and 0.09d-1, in the clams and polychaetes, respectively. Sediments labeled for different times (1.5-60 d) with different inorganic/organic As percentages led to diverse assimilation efficiencies of As (35.1-56.1% in the clams, and 51.6-72.6% in the polychaetes). Modeling calculations showed that sediment was a significant source for As bioaccumulation in the two deposit-feeders. After feeding on the spiked sediments, inorganic As (75.6%) was initially the predominant form, but arsenobetaine (AsB) became the predominant compound (>90%) in the clams and polychaetes during depuration, suggesting biotransformation of inorganic As. Combined with the biokinetics and biotransformation measurements, we showed that AsB was more efficiently assimilated and tended to be accumulated, whereas As(III) was less efficiently assimilated and more rapidly eliminated by the two invertebrates. This study demonstrated that As speciation in the sediments as a significant source for As bioaccumulation caused different bioavailability in deposit-feeding clams and polychaetes.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong; Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
8
|
Wang C, Yao Y, Wang P, Hou J, Qian J, Yuan Y, Fan X. In situ high-resolution evaluation of labile arsenic and mercury in sediment of a large shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:83-91. [PMID: 26398454 DOI: 10.1016/j.scitotenv.2015.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The precise evaluation of arsenic (As) and mercury (Hg) bioavailability in sediment is crucial to controlling As and Hg contamination, but traditional ex situ measurements hamper comprehensive analysis of labile As and Hg in sediment. In this study, we characterized in situ labile As and Hg in sediment of Lake Hongze using the zirconium (Zr) oxide diffusive gradients in thin films (DGT) technique and 3-mercaptopropyl functionalized silica gel DGT, respectively. The concentrations of DGT-labile As and Hg in the sediment profiles were found to exhibit considerable variation, ranging from 0.15 to 4.15 μg L(-1) for As and from 0.04 to 1.35 μg L(-1) for Hg. As and Hg flux values, calculated based on the concentration gradients measured from the DGT profiles for both the overlying water and sediment close to the sediment-water interface, were used to determine the contamination status of As and Hg. Flux values of As and Hg were between -0.066 and 0.067 ng cm(-2)d(-1) and between -0.0187 and 0.0181 ng cm(-2)d(-1), respectively. The GNU's Not Unix R (GNU R) programming language was used to identify outliers of As and Hg at various depths at the sampling sites. The results indicate that the sites with the most outliers were all located in the regions that were seriously affected by contaminants from the Huai River. The DGT-labile As and Hg concentrations in the 0-30 mm layer were found to be significantly correlated with concentrations of labile As and Hg, total dissolved As and Hg, and total As and Hg in the overlying water, as indicated by ex situ measurements. Results show that DGT is a reliable and high-resolution technique that can be used for in situ monitoring of the labile fractions of As and Hg in sediment in fresh water bodies.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yu Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ye Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiulei Fan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
9
|
Duncan EG, Maher WA, Foster SD. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:33-50. [PMID: 25443092 DOI: 10.1021/es504074z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.
Collapse
Affiliation(s)
- Elliott G Duncan
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra , University Drive, Bruce ACT 2601, Australia
| | | | | |
Collapse
|
10
|
Neave MJ, Glasby CJ, McGuinness KA, Parry DL, Streten-Joyce C, Gibb KS. The diversity and abundance of polychaetes (Annelida) are altered in sediments impacted by alumina refinery discharge in the Northern Territory, Australia. MARINE ENVIRONMENTAL RESEARCH 2013; 92:253-263. [PMID: 24172831 DOI: 10.1016/j.marenvres.2013.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
We collected polychaete diversity and abundance data at a range of impacted and reference sites near an alumina refinery in Melville Bay, northern Australia. The aims were to measure the impact of sediment modified by the alumina refinery discharge on polychaete communities and secondly to gather baseline data from which to measure future changes. Polychaete communities in both soft-bottom habitats and subtidal areas adjacent to mangrove forests were studied. We also developed and deployed an artificial substratum device to sample polychaetes associated with hard-substrate habitats. For each habitat, polychaete community composition was different between impacted and reference sites and at multiple time points. The impact of future changes either from bioremediation or management practices can be measured against these baseline data. Indicator species analysis was used to identify polychaete species that were significantly different at the locations tested, and we discuss their potential as indicator species.
Collapse
|
11
|
Eça GF, Pedreira RMA, Hatje V. Trace and major elements distribution and transfer within a benthic system: polychaete Chaetopterus variopedatus, commensal crab Polyonyx gibbesi, worm tube, and sediments. MARINE POLLUTION BULLETIN 2013; 74:32-41. [PMID: 23932476 DOI: 10.1016/j.marpolbul.2013.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Samples of the polychaete Chaetopterus variopedatus, worm tubes, commensal crab Polyonyx gibbesi and sediments were collected in eight sites in Todos os Santos Bay, Brazil, in order to evaluate the potential use of the polychaetes and crabs as biomonitors and to assess the relationships and accumulation of trace and major elements in different benthic compartments. Trace and major elements were determined by ICP OES. Organic carbon, total nitrogen and sulfur were determined by CNS elemental analyser. Tubes, crabs and polychaetes were important in the retention of trace and major elements. Metals that presented the highest accumulation in polychaetes (i.e. Mg>Al>Fe>Zn>Mn>Co>Cu>Ba>Cr) where the same for crabs (i.e. Mg>Al>Fe>Mn>Co>Zn>Cu>Ba>Cr). High concentrations of Al, Ba, Cr, Mn and Fe, from terrigenous sources, were observed in tubes, which presented accumulation factors up to 81.5 for Mn. Sedentary polychaetes are seen as good biomonitor alternatives for metal contamination studies, because they are one of the most abundant taxon in the benthic system, live in direct contact with sediments, are present in broad distributions and can also handle relatively high concentrations of metals ensuring chronic exposition. The possibility to work with not only the polychaete but also its tube offers advantages compared to bivalves that generally do not accumulate certain metals in very high levels.
Collapse
Affiliation(s)
- Gilmara F Eça
- Institute of Chemistry, Federal University of Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
| | | | | |
Collapse
|
12
|
Watts MJ, Barlow TS, Button M, Sarkar SK, Bhattacharya BD, Alam MA, Gomes A. Arsenic speciation in polychaetes (Annelida) and sediments from the intertidal mudflat of Sundarban mangrove wetland, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:13-25. [PMID: 22736103 DOI: 10.1007/s10653-012-9471-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (As(V) ranges from 0.16 to 0.50 mg kg(-1)) or arsenite (As(III) ranges from 0.10 to 0.41 mg kg(-1)) (30-53 % as inorganic As) and dimethylarsinic acid (DMA(V) <1-25 %). Arsenobetaine (AB < 16 %), and PO(4)-arsenoriboside (8-48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MA(V)) was not detected in any of the polychaetes. The highest total As (14.7 mg kg(-1) dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg(-1) dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg(-1) of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.
Collapse
Affiliation(s)
- M J Watts
- British Geological Survey, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Casado-Martinez MC, Duncan E, Smith BD, Maher WA, Rainbow PS. Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:576-590. [PMID: 22083342 DOI: 10.1007/s10646-011-0818-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 05/31/2023]
Abstract
The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.
Collapse
|
14
|
Zhang W, Huang L, Wang WX. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:582-588. [PMID: 21945928 DOI: 10.1016/j.aquatox.2011.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/13/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L(-1), with a corresponding uptake rate constant of 0.0015 L g(-1)d(-1). The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d(-1). Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Oceanography in Tropics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | |
Collapse
|
15
|
Baumann Z, Fisher NS. Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:747-56. [PMID: 21154840 DOI: 10.1002/etc.436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 05/09/2023]
Abstract
We studied the influence of sediment geochemistry on bioavailability of As, Cd, and Cr in deposit-feeding polychaetes. Metal phase speciation in sediments was determined with a sequential extraction scheme, and assimilation efficiencies (AEs) of ingested metals were determined by pulse-chase feeding experiments using γ-emitting isotopes. Worms were fed sediments collected from geochemically diverse estuaries that were labeled by sorbing dissolved radiotracers or mixing with radiolabeled algae. Uptake of sediment-bound metals was compared with that from labeled algae or goethite. Metal AEs showed a positive relationship with the exchangeable and carbonate sedimentary fractions, whereas metals in iron and manganese oxides and acid-volatile sulfides, or in pyrite and other refractory material, were inversely correlated with AEs. Arsenic was most bioavailable from algae (72%), less from sediments mixed with algae (24-70%) and least from sediments labeled directly (1-12%). Arsenic AEs in sediments labeled directly showed a positive correlation with sedimentary Mn and Al and negative correlation with Fe. Cadmium AEs were positively correlated with salinity and negatively correlated with sedimentary organic C. The AEs of Cr from sediments or algae were less than 5%, but they were 34% from pure goethite. By quantifying the relationship of metal speciation in sediments with their bioavailability for deposit-feeding polychaetes, the present study provides new insight into understanding metal bioaccumulation in benthic invertebrates.
Collapse
Affiliation(s)
- Zofia Baumann
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
16
|
Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:34-43. [PMID: 20149466 DOI: 10.1016/j.aquatox.2010.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/12/2010] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Arsenic bioaccumulation in the deposit-feeding polychaete Arenicola marina has been investigated using biodynamic modelling. Radiotracer techniques were used to determine the rates of uptake of As as arsenate from water and sediment and its subsequent efflux in the laboratory. Lugworms accumulated As from solution linearly at concentrations of 2-20 microg l(-1), with a corresponding uptake rate constant of 0.1648+/-0.0135 l g(-1)d(-1). 7.8+/-0.8% (assimilation efficiency) of the As ingested bound to sediments was retained after egestion of unassimilated metal. Elimination of As followed a two-compartment model, with mean efflux rate constants (from the slow pool) very similar for As accumulated from solution and ingested sediments (0.0449+/-0.0034 and 0.0478+/-0.0225 d(-1), respectively) and a corresponding biological half-time of roughly 15 d. A biodynamic model was constructed and validated through the comparison of biodynamic model predictions against measured bioaccumulated concentrations in lugworms from five UK estuaries. The model accurately predicted bioaccumulated As concentrations in lugworms using mean values of relevant physiological parameters (uptake rate, efflux rate and growth rate constants), a site-specific ingestion rate (calculated according to mean worm size and sediment organic matter content and expressed as the rate of ingestion of the mass of fine sediment), a site-specific sediment concentration measured after HCl extraction, and a standard dissolved As concentration. This combination of parameters showed that sediment ingestion contributed 30-60% of the total As accumulated by lugworms at the studied sites, depending on the different geochemistry at each site. This study showed that it is difficult to predict accurately As bioaccumulation at sites with different chemistries, unless that chemistry is taken into account.
Collapse
Affiliation(s)
- M C Casado-Martinez
- Department of Zoology, The Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Wang S, Zhao X. On the potential of biological treatment for arsenic contaminated soils and groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2009; 90:2367-2376. [PMID: 19269736 DOI: 10.1016/j.jenvman.2009.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/14/2009] [Accepted: 02/08/2009] [Indexed: 05/27/2023]
Abstract
Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation-demethylation, complexation, coprecipitation, and oxidation-reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products.
Collapse
Affiliation(s)
- Suiling Wang
- Henan Development & Reform Commission, Zhengzhou, Henan, PR China.
| | | |
Collapse
|
18
|
Diniz MS, Santos HM, Costa PM, Peres I, Costa MH, Capelo JL. Metallothionein responses in the Asiatic clam (Corbicula fluminea) after exposure to trivalent arsenic. Biomarkers 2008; 12:589-98. [PMID: 17852077 DOI: 10.1080/13547500701507701] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The main objective of this work was to evaluate arsenic effects on metallothionein (MT) induction by exposing a freshwater Asiatic clam (Corbicula fluminea) to different concentrations of this metalloid. The presence of MT-like proteins was detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis and compared with a standard rabbit MT. In addition, the polarographic response showed good correspondence between standard MT and MT-like curves from C. fluminea, allowing MT quantification. The results show that clams exposed to different concentrations of arsenic are able to induce significant levels of MTs. Although variability was found in MT induction, significant differences in MT levels were found after 28 days of exposure in all treatments in comparison with the controls, suggesting that exposure to arsenic induced MT-like proteins in C. fluminea.
Collapse
Affiliation(s)
- Mário S Diniz
- Instituto do Mar, Dept de Ciências e Engenharia do Ambiente, Caparica, Portugal.
| | | | | | | | | | | |
Collapse
|
19
|
Boyle D, Brix KV, Amlund H, Lundebye AK, Hogstrand C, Bury NR. Natural arsenic contaminated diets perturb reproduction in fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5354-60. [PMID: 18754393 DOI: 10.1021/es800230w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The toxicological effect of natural diets elevated in metals on reproduction in fish is poorly understood. The reproductive output of zebrafish fed the polychaete Nereis diversicolor collected from a metal-impacted estuary, Restronguet Creek, Cornwall, UK, was compared to fish fed N. diversicolor collected from a nonmetal impacted estuary, Blackwater, Essex, UK. Fish fed the metal laden N. diversicolorfor 68 days showed reduced reproductive output, characterized by reduced cumulative egg production (47%), cumulative number of spawns (30%), as well as reduced average number of eggs produced per spawn and % hatch rate. The mRNA transcript levels of the egg-yolk protein vitellogenin was also reduced 1.5 fold in the livers of female fish fed metal-laden N. diversicolor. No difference was seen between the lipid, protein, or moisture content of the two diets and no difference in growth was seen between the two fish populations. The Restronguet Creek polychaetes have elevated arsenic, cadmium, copper, zinc, lead, and silver body burdens, but the only element found to accumulate in the tissues of zebrafish fed this diet was As. The As in these N. diversicolor was found to be predominantly potentially toxic inorganic As species, 58% of total As content, which is unusual for aquatic organisms where arsenic is typically biotransformed into less toxic organoarsenical compounds. These results demonstrate that reproduction in fish is a sensitive target of exposure to a natural diet contaminated with As and this exposure route could be of significance to the health of fish populations.
Collapse
Affiliation(s)
- David Boyle
- King's College London, Nutritional Sciences Division, Franklin-Wilkins Building, 150 Stamford Street, London
| | | | | | | | | | | |
Collapse
|
20
|
A Review on Advanced Treatment Methods for Arsenic Contaminated Soils and Water. ACTA ACUST UNITED AC 2008. [DOI: 10.1520/jai101591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Notti A, Fattorini D, Razzetti EM, Regoli F. Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: experimental observations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2007; 26:1186-91. [PMID: 17571684 DOI: 10.1897/06-362r.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Mediterranean fan worm Sabella spallanzanii is characterized by elevated basal levels of arsenic in branchial crowns (>1000 microg/g) and an unusual prevalence of dimethylarsinic acid (DMA), a relatively toxic compound with a possible antipredatory role. The aim of this work was to obtain further insights on the capability of this polychaete to accumulate arsenic from different compounds and to operate biotransformation reactions. Laboratory exposures to arsenate (As(V)), dimethylarsinic acid (DMA), trimethylarsine (TMA), and arsenobetaine (AsB) revealed significant differences among tissues and kind of experiments. The highest increases of arsenic content were observed in branchial crowns of organisms treated with arsenate, which can enter the cell through the phosphate carrier system; lower variations were measured with DMA and TMA, while not-significant changes of total As occurred after treatments with AsB. In body tissues, exposure to As(V), DMA, and TMA confirmed a progressively lower accumulation of total arsenic, while a marked increase was caused by AsB. Obtained results suggested that accumulated arsenic could be chemically transformed, thus explaining the elevated basal levels of DMA typical of S. spallanzanii; during all the experiments, DMA was the most accumulated molecule, suggesting that this species possesses the enzymatic pathways for methylation and demethylation reactions of inorganic and trimethylated arsenicals. Only arsenobetaine was not converted into DMA, which would confirm a microbial pathway for degradation for this molecule, particularly important in body tissues of S. spallanzanii for the presence of bacteria associated to digestive tracts. Overall, the present study suggests future investigations on the biological role of arsenic and DMA in S. spallanzanii as a potential adaptive mechanism against predation in more vulnerable tissues.
Collapse
Affiliation(s)
- Alessandra Notti
- Istituto di Biologia e Genetica, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | |
Collapse
|
22
|
Wang S, Mulligan CN. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2006; 138:459-70. [PMID: 17049728 DOI: 10.1016/j.jhazmat.2006.09.048] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
Arsenic (As) contamination presents a hazard in many countries. Natural attenuation (NA) of As-contaminated soils and groundwater may be a cost-effective in situ remedial option. It relies on the site intrinsic assimilative capacity and allows in-place cleanup. Sorption to solid phases is the principal mechanism immobilizing As in soils and removing it from groundwater. Hydroxides of iron, aluminum and manganese, clay and sulfide minerals, and natural organic matter are commonly associated with soils and aquifer sediments, and have been shown to be significant As adsorbents. The extent of sorption is influenced by As speciation and the site geochemical conditions such as pH, redox potential, and the co-occurring ions. Microbial activity may catalyze the transformation of As species, or mediate redox reactions thus influencing As mobility. Plants that are capable of hyperaccumulating As may translocate As from contaminated soils and groundwater to their tissues, providing the basis for phytoremediation. However, NA is subject to hydrological changes and may take substantial periods of time, thus requiring long-term monitoring. The current understanding of As NA processes remains limited. Sufficient site characterization is critical to the success of NA. Further research is required to develop conceptual and mathematical models to predict the fate and transport of As and to evaluate the site NA capacity. Engineering enhanced NA using environmentally benign products may be an effective alternative.
Collapse
Affiliation(s)
- Suiling Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Boulevard W., EV6.187, Montreal, Quebec, Canada H3G 1M8
| | | |
Collapse
|