1
|
Barroso NG, Martins AJ, Júnior FDO, Okuro PK, Pereira RC, Vicente AA, Pastrana LM, Cunha RL, Cerqueira MA. β-carotene and resveratrol loaded glycerol monostearate-based oleogels: Physicochemical characterization at low gelation concentrations. Food Res Int 2024; 197:115181. [PMID: 39593392 DOI: 10.1016/j.foodres.2024.115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024]
Abstract
Oleogels are semi-solid systems that can function both as replacers of trans and saturated fats and/or as carriers of lipophilic bioactive compounds. However, bioactive compounds can affect the structure of the oleogel matrix and this effect depends on the properties of such compounds. Therefore, the aim of this study was to develop oleogels loaded with β-carotene (BC) or resveratrol (R), with low concentrations of glycerol monostearate (GMS, 2-5 wt%) and sunflower oil as organic solvent. The gels were characterized by polarized light microscopy, rheological measurements, differential scanning calorimetry, oil binding capacity and Fourier transform infrared spectroscopy. At higher GMS concentrations, stronger oleogels and higher temperatures associated with transitions (sol-gel/gel-sol and crystallization/melting) were observed. The incorporation of bioactive compounds modified the gelation behavior. BC weakened the oleogel structure during the transient molecular organization of GMS, whereas R increased the dynamic moduli. BC also caused slight oil release at lower concentrations, while R improved retention. The high hydrophobicity of BC may be disturbing the solubility balance of the system, while R has phenolic hydroxyl groups that may strengthen hydrogen bonds. However, there were no considerable changes in mechanical properties after storage. We hypothesize that the molecular organization of GMS over time may be masking the modifications that bioactive compounds cause in mechanical properties. In fact, changes in the structure were revealed, as the addition of BC or R changed the morphology of the three-dimensional network crystals. Thus, the results can contribute to the rational choice of system components using low concentrations of oleogelator, as the composition of the bioactive compound exerts influence on the modulation of lipid matrices.
Collapse
Affiliation(s)
- Noádia G Barroso
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Artur J Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Fernando D O Júnior
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Paula K Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Rui C Pereira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Rosiane L Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
2
|
Frolova Y, Makarenko M, Kochetkova A. Analysis of Oleogel Volatile Profile Formation under Ultrasonic Treatment. Gels 2023; 9:823. [PMID: 37888396 PMCID: PMC10606149 DOI: 10.3390/gels9100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Under certain conditions, ultrasonic treatment of certain foods and ingredients can contribute to the appearance of an extraneous odor, which is not usual for them, especially in fat-containing products. Since the food sector uses high-intensity ultrasound to control the crystallization of fats, the development of foreign smells and secondary fat oxidation products may impact the quality and safety of such items. In this work, we studied the volatile compounds' profiles of oleogels structured with individual fractions of beeswax using ultrasonic treatment. For this work, six samples of oleogels were obtained. Sunflower oil was used as a fatty base, and three fractions of beeswax were used as gelators: hydrocarbon fraction (>99%), monoester fraction (>95%), and a mixture fraction of wax di- and triesters (10.1%), free fatty acids (40.1%), and free fatty alcohols (49.8%). The influence of ultrasonic treatment on the properties of oleogels was assessed using light microscopy in polarized light, texture analysis, gas chromatography with flame ionization, and mass spectrometric detection. Ultrasonic treatment affected the crystallization of oleogels and led to the formation of smaller crystals. At the same time, sonication led to both an increase and a decrease in the firmness of oleogels, depending on the composition of the gelator. As regards volatile compounds, a total of 121 fragrant substances were identified in all samples, including such groups as alkanes, alkenes, alkadienes, alkynes, alkadiynes, alcohols, ketones, aldehydes, terpenes, alkyl alkane, and alkyl benzene derivatives. Ultrasonic treatment caused formation of new volatile unsaturated compounds. Some of them are known to have an unpleasant odor and thus might be responsible for the extraneous odor formation in studied fatty systems. Those were mainly (E)-2-octene, 1-heptene, 1,3-butadiene, and 1,3-octadiene in all oleogel samples. Sonicated samples B and C additionally had but-1-en-3-yne, pentenyne, and 1,3-butadiyne, whose odor can also be characterized as extraneous and distasteful. Several volatile compounds, supposed to be products of lipid oxidation, were also identified. Here we assume a reasonable approach is needed when selecting sonication conditions to prevent undesirable taste and flavor in oleogels and oleogel-based food products.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution “Federal Research Center of Nutrition, Biotechnology and Food Safety”, 109240 Moscow, Russia;
| | - Mariia Makarenko
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution “Federal Research Center of Nutrition, Biotechnology and Food Safety”, 109240 Moscow, Russia;
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution “Federal Research Center of Nutrition, Biotechnology and Food Safety”, 109240 Moscow, Russia;
| |
Collapse
|
3
|
Sobolev R, Frolova Y, Sarkisyan V, Kochetkova A. Waxy Oleogels for Partial Substitution of Solid Fat in Margarines. Gels 2023; 9:683. [PMID: 37754364 PMCID: PMC10530580 DOI: 10.3390/gels9090683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
One of the research directions of oleogels is to study the possibility of their practical application in the food industry as an alternative to solid fats. In this work, the possibility of replacing solid fat in margarine (fat content 82.5%) with oleogels was evaluated. The oleogel content varied from 10 to 50% of the fat phase. The concentration of gelator for which beeswax or wax components (9:1 combination of beeswax and hydrocarbons) were used represented 3% in oleogels. The fatty acid composition of the fat components used, their textural characteristics, and their color were studied. The following physicochemical and rheological properties of margarines were determined: color values, textural and thermal characteristics, and sensory properties. The data obtained were processed using principal component analysis (PCA). Oleogels were characterized by lower textural properties compared to commercial fat (CF), but a lower content of saturated fatty acids. When using oleogels, the color characteristics of the margarines changed insignificantly. A decrease in textural and organoleptic properties was shown when using more than 30% oleogel in the composition of margarines. It was found that an increase in the proportion of oleogel leads to a decrease in the melting enthalpy of margarines. The margarines, depending on the ratio of oleogel in the fat phase, were characterized by a content of saturated fatty acids reduced by 7-35% and increased by a 18-92% level of polyunsaturated fatty acids. Thus, the application of oleogels in margarine technology makes it possible to adjust the fatty acid composition while improving the physicochemical properties.
Collapse
Affiliation(s)
| | | | - Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific, Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (R.S.); (Y.F.); (A.K.)
| | | |
Collapse
|
4
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Codină GG, Prisacaru AE. Structuring of Cold Pressed Oils: Evaluation of the Physicochemical Characteristics and Microstructure of White Beeswax Oleogels. Gels 2023; 9:gels9030216. [PMID: 36975665 PMCID: PMC10048366 DOI: 10.3390/gels9030216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The aim of the study was to characterize the gelling effect of beeswax (BW) using different types of cold pressed oil. The organogels were produced by hot mixing sunflower oil, olive oil, walnut oil, grape seed oil and hemp seed oil with 3%, 7% and 11% beeswax. Characterization of the oleogels was done using Fourier transform infrared spectroscopy (FTIR), the chemical and physical properties of the oleogels were determined, the oil binding capacity was estimated and the SEM morphology was studied. The color differences were highlighted by the CIE Lab color scale for evaluating the psychometric index of brightness (L*), components a and b. Beeswax showed excellent gelling capacity at 3% (w/w) of 99.73% for grape seed oil and a minimum capacity of 64.34%for hemp seed oil. The value of the peroxide index is strongly correlated with the oleogelator concentration. Scanning electron microscopy described the morphology of the oleogels in the form of overlapping structures of platelets similar in structure, but dependent on the percentage of oleogelator added. The use in the food industry of oleogels from cold-pressed vegetable oils with white beeswax is conditioned by the ability to imitate the properties of conventional fats.
Collapse
|
5
|
da Silva RC, Ferdaus MJ, Foguel A, da Silva TLT. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023; 9:gels9030180. [PMID: 36975629 PMCID: PMC10048032 DOI: 10.3390/gels9030180] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fats and oils in food give them flavor and texture while promoting satiety. Despite the recommendation to consume predominantly unsaturated lipid sources, its liquid behavior at room temperature makes many industrial applications impossible. Oleogel is a relatively new technology applied as a total or partial replacement for conventional fats directly related to cardiovascular diseases (CVD) and inflammatory processes. Some of the complications in developing oleogels for the food industry are finding structuring agents Generally Recognized as Safe (GRAS), viable economically, and that do not compromise the oleogel palatability; thus, many studies have shown the different possibilities of applications of oleogel in food products. This review presents applied oleogels in foods and recent proposals to circumvent some disadvantages, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.
Collapse
Affiliation(s)
- Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Md. Jannatul Ferdaus
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | |
Collapse
|
6
|
Winkler‐Moser JK, Hwang H, Felker FC, Byars JA, Peterson SC. Increasing the firmness of wax‐based oleogels using ternary mixtures of sunflower wax with beeswax:candelilla wax combinations. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Hong‐Sik Hwang
- USDA, ARS National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Frederick C. Felker
- USDA, ARS National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Jeffrey A. Byars
- USDA, ARS National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Steven C. Peterson
- USDA, ARS National Center for Agricultural Utilization Research Peoria Illinois USA
| |
Collapse
|
7
|
Frolova Y, Sarkisyan V, Sobolev R, Kochetkova A. Ultrasonic Treatment of Food Colloidal Systems Containing Oleogels: A Review. Gels 2022; 8:gels8120801. [PMID: 36547325 PMCID: PMC9777715 DOI: 10.3390/gels8120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The use of oleogels as an alternative to solid fats to reduce the content of saturated and trans-isomeric fatty acids is a developing area of research. Studies devoted to the search for methods of obtaining oleogels with given properties are of current interest. Ultrasonic treatment as a method for modifying oleogel properties has been used to solve this problem. The number of publications on the study of the effect of ultrasonic treatment on oleogel properties is increasing. This review aimed to systematize and summarize existing data. It allowed us to identify the incompleteness of this data, assess the effect of ultrasonic treatment on oleogel properties, which depends on various factors, and identify the vector of this direction in the food industry. A more detailed description of the parameters of ultrasonic treatment is needed to compare the results between various publications. Ultrasonic treatment generally leads to a decrease in crystal size and an increase in oil-binding capacity, rheological properties, and hardness. The chemical composition of oleogels and the concentration of gelators, the amplitude and duration of sonication, the cooling rate, and the crystallization process stage at which the treatment occurs are shown to be the factors influencing the efficiency of the ultrasonic treatment.
Collapse
|
8
|
Sarkisyan V, Frolova Y, Sobolev R, Kochetkova A. On the Role of Beeswax Components in the Regulation of Sunflower Oil Oleogel Properties. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Qiu H, Qu K, Eun JB, Zhang H. Analysis of thermal oxidation of different multi-element oleogels based on carnauba wax, β-sitosterol/lecithin, and ethyl cellulose by classical oxidation determination method combined with the electronic nose. Food Chem 2022; 405:134970. [DOI: 10.1016/j.foodchem.2022.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
10
|
|
11
|
Winkler-Moser JK, Anderson JA, Hwang HS. Texture and flavor evaluation of peanut butter stabilized with natural waxes. J Food Sci 2022; 87:1851-1864. [PMID: 35318670 DOI: 10.1111/1750-3841.16118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022]
Abstract
Natural peanut butter was stabilized with 1.0%-2.0% (w/w) beeswax (BW), candelilla wax (CLW), rice bran wax (RBW), or sunflower wax (SFW). The appearance, spreadability, mouthfeel, and flavor attributes of these samples were evaluated by a trained sensory panel using commercial stabilized peanut butter and a sample stabilized with hydrogenated cottonseed oil as references. The waxes and their blend ratio significantly (p < 0.05) influenced appearance, spreadability, firmness, mouthfeel, and flavor attributes. Samples with 1.5%-2.0% CLW, or 1.0%-1.5% RBW had the fewest differences in appearance and texture from the reference and commercial samples. However, an off-flavor was attributed to 1.5% or higher CLW. Samples stabilized with BW or with 1.0%-1.5% RBW had the fewest difference in flavor compared to the reference sample. Overall, samples stabilized with 1.0%-1.5% RBW scored closest to the commercial and reference samples. The response of CLW, RBW, and SFW (which was only evaluated for appearance and spreadability) indicates that amounts of these waxes could be tailored in different products to achieve a product with desirable texture and flavor as well as stability to oil loss. PRACTICAL APPLICATION: This research provides information that could be used by food companies that make seed or nut butters as spreads or as ingredients for use in foods. It shows the impact of the use of four types of waxes as stabilizers, at commercially relevant levels (< 3.0%), and at levels previously shown to be effective for stabilization, on the firmness, spreadability, and other texture and flavor attributes, and thus provides a starting point for optimization for commercial product specifications.
Collapse
Affiliation(s)
- Jill K Winkler-Moser
- USDA, ARS, National Center for Agricultural Utilization Research, Functional Foods Research Unit, Peoria, Illinois, USA
| | - Julie A Anderson
- USDA, ARS, National Center for Agricultural Utilization Research, Functional Foods Research Unit, Peoria, Illinois, USA
| | - Hong-Sik Hwang
- USDA, ARS, National Center for Agricultural Utilization Research, Functional Foods Research Unit, Peoria, Illinois, USA
| |
Collapse
|
12
|
The Honey Bee Apis mellifera: An Insect at the Interface between Human and Ecosystem Health. BIOLOGY 2022; 11:biology11020233. [PMID: 35205099 PMCID: PMC8869587 DOI: 10.3390/biology11020233] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Apis mellifera Linnaeus (1758), a honey bee, is a eusocial insect widely known for its role in pollination, an essential ecosystem service for plant biodiversity, and quality of vegetables and fruit products. In addition, honey bees and bee products are valuable bioindicators of pollutants, such as airborne particulate matter, heavy metals, and pesticides. In this review, we explore the provisioning, regulating, and cultural services provided by the honey bee, an insect at the interface between human and ecosystem health. Abstract The concept of ecosystem services is widely understood as the services and benefits thatecosystems provide to humans, and they have been categorised into provisioning, regulating, supporting, and cultural services. This article aims to provide an updated overview of the benefits that the honey bee Apis mellifera provides to humans as well as ecosystems. We revised the role of honey bees as pollinators in natural ecosystems to preserve and restore the local biodiversity of wild plants; in agro-ecosystems, this species is widely used to enhance crop yield and quality, meeting the increasing food demand. Beekeeping activity provides humans not only with high-quality food but also with substances used as raw materials and in pharmaceuticals, and in polluted areas, bees convey valuable information on the environmental presence of pollutants and their impact on human and ecosystem health. Finally, the role of the honey bee in symbolic tradition, mysticism, and the cultural values of the bee habitats are also presented. Overall, we suggest that the symbolic value of the honey bee is the most important role played by this insect species, as it may help revitalise and strengthen the intimate and reciprocal relationship between humans and the natural world, avoiding the inaccuracy of considering the ecosystems as mere providers of services to humans.
Collapse
|
13
|
Wang Z, Chandrapala J, Truong T, Farahnaky A. Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review. Crit Rev Food Sci Nutr 2022; 63:6069-6113. [PMID: 35057682 DOI: 10.1080/10408398.2022.2027339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.
Collapse
Affiliation(s)
- Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jayani Chandrapala
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Tuyen Truong
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Frolova Y, Sarkisyan V, Sobolev R, Makarenko M, Semin M, Kochetkova A. The Influence of Edible Oils' Composition on the Properties of Beeswax-Based Oleogels. Gels 2022; 8:48. [PMID: 35049583 PMCID: PMC8774560 DOI: 10.3390/gels8010048] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to find relationships between the properties of beeswax-based oleogels and the type of oil used. The influence of linseed, sunflower, olive, and fish oils was studied. For these oils, the fatty acid composition, the content of total polar components, and the iodine value were characterized. Textural and thermodynamic properties were determined for oleogels, the oil-binding capacity was estimated, and the morphology of crystals was studied. The concentration of beeswax in all oleogels was 6.0% w/w. It was shown that the type of oil has a significant influence on all characteristics of the oleogels. The use of different oils at the same technological treatment leads to the formation of crystals of diverse morphology-from platelets to spherulites. At the same time, it was revealed that some characteristics of oils have a varying contribution to the properties of oleogels. The content of total polar materials in oils is associated with a decrease in strength parameters (yield value and elastic modulus) and the oil-binding capacity of oleogels. In its turn, the iodine value of oils has a close positive correlation with the melting and crystallization temperatures of oleogels. The results obtained in this article indicate that the properties of beeswax-based oleogels can be directed by changing the oil composition.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Roman Sobolev
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Mariia Makarenko
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Michael Semin
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| |
Collapse
|
15
|
Sarkisyan V, Sobolev R, Frolova Y, Vorobiova I, Kochetkova A. A Study of the Quantitative Relationship between Yield Strength and Crystal Size Distribution of Beeswax Oleogels. Gels 2022; 8:gels8010039. [PMID: 35049571 PMCID: PMC8774415 DOI: 10.3390/gels8010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Beeswax and beeswax hydrocarbon-based oleogels were studied to evaluate the quantitative relationship between their yield strength and crystal size distribution. With this aim, oleogels were prepared using four different cooling regimes to obtain different crystal size distributions. The microstructure was evaluated by polarized light microscopy. The yield strength is measured by the cone penetration test. Oleogels were characterized by average grain size, microstructure entropy, grain boundary energy per unit volume, and microstructure temperature. We have provided the theoretical basis for interpreting the microstructure and evaluating the microstructure-based hardening of oleogels. It is shown that the microstructure entropy might be used to predict the yield strength of oleogels by the Hall-Petch relationship.
Collapse
|