1
|
Santos EN, Fazekas ÁF, Fekete L, Miklós T, Gyulavári T, Gokulakrishnan SA, Arthanareeswaran G, Hodúr C, László Z, Veréb G. Enhancing membrane performance for oily wastewater treatment: comparison of PVDF composite membranes prepared by coating, blending, and grafting methods using TiO 2, BiVO 4, CNT, and PVP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64578-64595. [PMID: 39541027 PMCID: PMC11624227 DOI: 10.1007/s11356-024-35456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
This comparative study investigates the modification of polyvinylidene fluoride (PVDF) membranes with different nanoparticles (TiO2 or TiO2-based composites containing BiVO4 and/or CNT), using three distinct methods (blending, coating, and grafting) and polyvinylpyrrolidone (PVP). The objective was to enhance the photocatalytic and filtration performance for the separation of oil-in-water emulsions. Regarding the UV activity, the PVDF-TiO2/CNT/PVP-coated membrane presented the best performance. Overall, the addition of 2 wt.% CNT to the TiO2 notably enhanced the photocatalytic activity of the membranes for both UV and visible irradiations. Meanwhile, the presence of 2 wt.% BiVO4 was beneficial only for photocatalysis under visible light irradiation. Regarding the filtration of the oil-in-water emulsions, 2 wt.% CNT or BiVO4 addition resulted in the highest fluxes in the series of the PVDF-TiO2-grafted membranes. The presence of pore former PVP led to relatively high fluxes and photocatalytic activities for all series. Regarding the modification methods, coated membranes showed the highest photocatalytic efficiency and lowest fluxes. Grafted membranes showed relatively high photocatalytic efficiencies and the best filtration performances.
Collapse
Affiliation(s)
- Erika Nascimben Santos
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
- Doctoral School of Environmental Sciences, Faculty of Science and Informatics, University of Szeged, Aradi Vértanúk Sqr. 1, HU-6720, Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Laura Fekete
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Tímea Miklós
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, HU-6720, Szeged, Hungary
| | - Sivasundari Arumugam Gokulakrishnan
- Department of Chemical Engineering, National Institute of Technology, Membrane Research Laboratory, Tiruchirappalli, 620015, Tamilnadu, India
| | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering, National Institute of Technology, Membrane Research Laboratory, Tiruchirappalli, 620015, Tamilnadu, India
| | - Cecilia Hodúr
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Zsuzsanna László
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary
| | - Gábor Veréb
- Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary.
| |
Collapse
|
2
|
Fazekas ÁF, Gyulavári T, Pap Z, Bodor A, Laczi K, Perei K, Illés E, László Z, Veréb G. Effects of Different TiO 2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters. MEMBRANES 2023; 13:812. [PMID: 37887984 PMCID: PMC10608089 DOI: 10.3390/membranes13100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including -OH or/and -COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the membranes coated with functionalized CNT-containing composites provided significantly higher fluxes than the non-functionalized ones, proving the beneficial effect of the surface modifications of the CNTs. Additionally, until the end of the filtration experiments (VRR = 5), notable flux enhancements were achieved with both TiO2 (~50%) and TiO2/CNT-coated membranes (up to ~300%), compared to the uncoated membrane. The irreversible filtration resistances of the membranes indicated that both the hydrophilicity and surface charge (zeta potential) played a crucial role in membrane fouling. However, a sharp and significant flux decrease (~90% flux reduction ratio) was observed for all membranes until reaching a VRR of 1.1-1.8, which could be attributed to the chemical composition of the oil. Gas chromatography measurements revealed a lack of hydrocarbon derivatives with polar molecular fractions (which can act as natural emulsifiers), resulting in significant coalescent ability (and less stable emulsion). Therefore, this led to a more compact cake layer formation on the surface of the membranes (compared to a previous study). It was also demonstrated that all membranes had excellent purification efficiency (97-99.8%) regarding the turbidity, but the effectiveness of the chemical oxygen demand reduction was slightly lower, ranging from 93.7% to 98%.
Collapse
Affiliation(s)
- Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
- Centre of Nanostructured Materials and Bio-Nano Interfaces, Institute for Interdisciplinary, Research on Bio-Nano-Sciences, Treboniu Laurian 42, RO-400271 Cluj-Napoca, Romania
- STAR-UBB Institute, Mihail Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| | - Attila Bodor
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
| | - Erzsébet Illés
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars Sq. 7, H-6724 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Sisay EJ, Fazekas ÁF, Gyulavári T, Kopniczky J, Hopp B, Veréb G, László Z. Investigation of Photocatalytic PVDF Membranes Containing Inorganic Nanoparticles for Model Dairy Wastewater Treatment. MEMBRANES 2023; 13:656. [PMID: 37505022 PMCID: PMC10383713 DOI: 10.3390/membranes13070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Membrane separation processes are promising methods for wastewater treatment. Membrane fouling limits their wider use; however, this may be mitigated using photocatalytic composite materials for membrane preparation. This study aimed to investigate photocatalytic polyvinylidene fluoride (PVDF)-based nanocomposite membranes for treating model dairy wastewater containing bovine serum albumin (BSA). Membranes were fabricated via physical coating (with TiO2, and/or carbon nanotubes, and/or BiVO4) and blending (with TiO2). Another objective of this study was to compare membranes of identical compositions fabricated using different techniques, and to examine how various TiO2 concentrations affect the antifouling and cleaning performances of the blended membranes. Filtration experiments were performed using a dead-end cell. Filtration resistances, BSA rejection, and photocatalytic cleanability (characterized by flux recovery ratio (FRR)) were measured. The surface characteristics (SEM, EDX), roughness (measured by atomic force microscopy, AFM), wettability (contact angle measurements), and zeta potential of the membranes were also examined. Coated PVDF membranes showed higher hydrophilicity than the pristine PVDF membrane, as evidenced by a decreased contact angle, but the higher hydrophilicity did not result in higher fluxes, unlike the case of blended membranes. The increased surface roughness resulted in increased reversible fouling, but decreased BSA retention. Furthermore, the TiO2-coated membranes had a better flux recovery ratio (FRR, 97%) than the TiO2-blended membranes (35%). However, the TiO2-coated membrane had larger total filtration resistances and a lower water flux than the commercial pristine PVDF membrane and TiO2-blended membrane, which may be due to pore blockage or an additional coating layer formed by the nanoparticles. The BSA rejection of the TiO2-coated membrane was lower than that of the commercial pristine PVDF membrane. In contrast, the TiO2-blended membranes showed lower resistance than the pristine PVDF membrane, and exhibited better antifouling performance, superior flux, and comparable BSA rejection. Increasing the TiO2 content of the TiO2-blended membranes (from 1 to 2.5%) resulted in increased antifouling and comparable BSA rejection (more than 95%). However, the effect of TiO2 concentration on flux recovery was negligible.
Collapse
Affiliation(s)
- Elias Jigar Sisay
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, Institute of Physics, University of Szeged, Dóm Sqr. 9, H-6720 Szeged, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, Institute of Physics, University of Szeged, Dóm Sqr. 9, H-6720 Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Fekete L, Fazekas ÁF, Hodúr C, László Z, Ágoston Á, Janovák L, Gyulavári T, Pap Z, Hernadi K, Veréb G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO 2/CNT Nanocomposite-Modified PVDF Membranes. MEMBRANES 2023; 13:209. [PMID: 36837714 PMCID: PMC9964517 DOI: 10.3390/membranes13020209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.
Collapse
Affiliation(s)
- Laura Fekete
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Cecilia Hodúr
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, H-3515 Miskolc, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Jamaluddin NS, Alias NH, Jaafar J, Othman NH, Sadaki S, Marpani F, Lau WJ, Abd Aziz MH. Exploring Potential of Adsorptive-Photocatalytic Molybdenum Disulphide/Polyacrylonitrile (MoS2/PAN) Nanofiber Coated Cellulose Acetate (CA) Membranes for Treatment of Wastewater. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:5290-5300. [DOI: 10.1007/s10924-022-02619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 09/02/2023]
|
6
|
Sisay EJ, Veréb G, Pap Z, Gyulavári T, Ágoston Á, Kopniczky J, Hodúr C, Arthanareeswaran G, Sivasundari Arumugam GK, László Z. Visible-light-driven photocatalytic PVDF-TiO 2/CNT/BiVO 4 hybrid nanocomposite ultrafiltration membrane for dairy wastewater treatment. CHEMOSPHERE 2022; 307:135589. [PMID: 35803379 DOI: 10.1016/j.chemosphere.2022.135589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Enhancing the performance of polymeric membranes by nanomaterials has become of great interest in the field of membrane technology. The present work aimed to fabricate polyvinylidene fluoride (PVDF)-hybrid nanocomposite membranes and modify them with TiO2 and/or BiVO4 nanoparticles and/or carbon nanotubes (CNTs) in various ratios. Their photocatalytic performance under visible light was also investigated. All modified PVDF membranes exhibited higher hydrophilicity (lower contact angle of water droplets) than that of the neat membrane used as a reference. The membranes were characterized by using bovine serum albumin (BSA) as model dairy wastewater. The hybrid membranes had better antifouling properties as they had lower irreversible filtration resistance than that of the neat membrane. Hybrid PVDF membranes containing TiO2/CNT/BiVO4 showed the highest flux and lowest irreversible resistance during the filtration of the BSA solution. PVDF-TiO2/BiVO4 had the highest flux recovery ratio under visible light (70% for the PVDF mixed with 0.5% TiO2 and 0.5% BiVO4). The hydrophilicity of membrane surfaces increased with the incorporation of nanoparticles, preventing BSA to bind to the surface. This resulted in a slight decrease in BSA and chemical oxygen demand rejections, which were still above 97% in all cases.
Collapse
Affiliation(s)
- Elias Jigar Sisay
- Doctoral School of Environmental Sciences, University of Szeged, H-6720, Rerrich Béla Sqr. 1, Hungary; Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| | - Gábor Veréb
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary.
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary.
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720, Szeged, Hungary.
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, Institute of Physics, University of Szeged, Szeged, H-6720, Dóm Sqr. 9., Hungary.
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | | | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Moszkvai Blvd. 9, Hungary.
| |
Collapse
|
7
|
Development and Investigation of Photoactive WO3 Nanowire-Based Hybrid Membranes. Catalysts 2022. [DOI: 10.3390/catal12091029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Novel hybrid structures have attracted attention in several instances of scientific research and different technological applications in this decade due to their novel characteristics and wide range of applicability. Hybrid membranes with multiple components (three or more) are also increasingly used in water purification applications, and their ease of handling and reusability make them a promising candidate for the degradation of organic pollutants by photocatalysis. In this study, the preparation and characterization of tungsten trioxide nanowire (WO3 NW)-based hybrid membrane structures are reported. Furthermore, the adsorption properties and photocatalytic efficiency of the as-prepared membranes against methylene blue (MB) organic dye under UV irradiation is also presented. Characterization techniques, such as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) are performed to study the morphology and surface of the as-prepared hybrid membranes. The removal efficiency of the hybrid membranes against MB is 77% in a 120 min decomposition reaction. The enhanced value can be attributed to the hybrid structure of the membrane that enhances not only the adsorption capability, but also the photocatalytic performance. Based on the results obtained, it is hoped that hybrid membrane technology could be a promising candidate for future photocatalysis-based water treatment applications.
Collapse
|
8
|
Balassa L, Ágoston Á, Kása Z, Hornok V, Janovák L. Surface sulfate modified TiO2 visible light active photocatalyst for complex wastewater purification: Preparation, characterization and photocatalytic activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Nascimben Santos E, Fazekas Á, Hodúr C, László Z, Beszédes S, Scheres Firak D, Gyulavári T, Hernádi K, Arthanareeswaran G, Veréb G. Statistical Analysis of Synthesis Parameters to Fabricate PVDF/PVP/TiO 2 Membranes via Phase-Inversion with Enhanced Filtration Performance and Photocatalytic Properties. Polymers (Basel) 2021; 14:polym14010113. [PMID: 35012135 PMCID: PMC8747740 DOI: 10.3390/polym14010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Non-solvent induced phase-inversion is one of the most used methods to fabricate membranes. However, there are only a few studies supported by statistical analysis on how the different fabrication conditions affect the formation and performance of membranes. In this paper, a central composite design was employed to analyze how different fabrication conditions affect the pure water flux, pore size, and photocatalytic activity of polyvinylidene fluoride (PVDF) membranes. Polyvinylpyrrolidone (PVP) was used to form pores, and titanium dioxide (TiO2) to ensure the photocatalytic activity of the membranes. The studied bath temperatures (15 to 25 °C) and evaporation times (0 to 60 s) did not significantly affect the pore size and pure water flux of the membranes. The concentration of PVDF (12.5 to 17.5%) affected the viscosity, formation capability, and pore sizes. PVDF at high concentrations resulted in membranes with small pore sizes. PVP affected the pore size and should be used to a limited extent to avoid possible hole formation. TiO2 contents were responsible for the decolorization of a methyl orange solution (10-5 M) up to 90% over the period studied (30 h). A higher content of TiO2 did not increase the decolorization rate. Acidic conditions increased the photocatalytic activity of the TiO2-membranes.
Collapse
Affiliation(s)
- Erika Nascimben Santos
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
| | - Ákos Fazekas
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Sándor Beszédes
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Daniele Scheres Firak
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Szeged, Dóm Square 7, HU-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, HU-6720 Szeged, Hungary; (T.G.); (K.H.)
| | - Klára Hernádi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, HU-6720 Szeged, Hungary; (T.G.); (K.H.)
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, HU-3515 Miskolc, Hungary
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India;
| | - Gábor Veréb
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Correspondence:
| |
Collapse
|