1
|
Park SM, Choi KC, Lee BH, Yoo SY, Kim CY. Serial Vascular Responses of Balloon-Expandable Stent With Biodegradable Film-Type Graft in a Rabbit Iliac Artery Dissection Model (BioGard Study). Korean Circ J 2024; 54:499-512. [PMID: 39109598 PMCID: PMC11306422 DOI: 10.4070/kcj.2024.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Arterial dissection during endovascular therapy rarely occurs but can be lethal. A fabric-based covered graft stents yield poor clinical outcomes. A novel balloon-expandable stent with biodegradable film graft for overcoming these issues was evaluated in a rabbit iliac artery model. METHOD Eighteen rabbits with iliac artery dissections were induced by balloon over-inflation on angiography (Ellis type 2 or 3) and treated using the test device (3.0×24 mm). Subsequently, survived twelve animals underwent histologic examinations and micro-computed tomography (CT) at 0, 2, 4, and 8 weeks and 3, 6, 9, and 12 months and angiography at one-year. RESULTS There were no adverse cardiovascular events during the one-year. Early-stage histologic examination revealed complete sealing of disrupted vessels by the device, exhibiting mural hematoma, peri-stent red thrombi, and dense infiltration of inflammatory cells. Mid- and long-term histologic examination showed patent stents with neointimal hyperplasia over the stents (% area stenosis: 11.8 at 2 weeks, 26.1 at 1 month, 29.7 at 3 months, 49.2 at 9 months, and 51.0 at 1 year), along with mild peri-strut inflammatory response (Grade: 1-2 at mid-term and 0-1 at long-term). The graft film became scarcely visible after six months. Both CT and angiography revealed no instances of thrombotic occlusion or in-stent restenosis (% diameter stenosis: 5.7 at 2 weeks, 12.3 at 1 month, 14.2 at 3 months, 25.1 at 9 months, and 26.6 at 1 year). CONCLUSIONS The novel balloon-expandable stent with a biodegradable film graft demonstrates feasibility in managing severe artery dissection and preventing lethal vascular events in animal model.
Collapse
Affiliation(s)
- Sang Min Park
- Division of Cardiology, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.
| | - Kyung-Chan Choi
- Department of Pathology, Cardiovascular Center, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Byeong Han Lee
- Laboratory Animal Center, Osong Medical Innovation Foundation, Osong, Korea
| | - Sang Yol Yoo
- Department of Radiology, H Plus Yangji Hospital, Seoul, Korea
| | | |
Collapse
|
2
|
Eşmekaya MA, Gürsoy G, Coşkun A. The estimation of pore size distribution of electroporated MCF-7 cell membrane. Electromagn Biol Med 2024; 43:176-186. [PMID: 38900674 DOI: 10.1080/15368378.2024.2366272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The size of the pores created by external electrical pulses is important for molecule delivery into the cell. The size of pores and their distribution on the cell membrane determine the efficiency of molecule transport into the cell. There are very few studies visualizing the presence of electropores. In this study, we aimed to investigate the size distribution of electropores that were created by high intensity and short duration electrical pulses on MCF-7 cell membrane. Scanning Electron Microscopy (SEM) was used to visualize and characterize the membrane pores created by the external electric field. Structural changes on the surface of the electroporated cell membrane was observed by Atomic Force Microscopy (AFM). The size distribution of pore sizes was obtained by measuring the radius of 500 electropores. SEM imaging showed non-uniform patterning. The average radius of the electropores was 12 nm, 51.60% of pores were distributed within the range of 5 to 10 nm, and 81% of pores had radius below 15 nm. These results showed that microsecond (µs) high intensity electrical pulses cause the creation of heterogeneous nanopores on the cell membrane.
Collapse
Affiliation(s)
- Meriç Arda Eşmekaya
- Department of Biophysics, Basic Medical Sciences, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Güney Gürsoy
- Department of Biophysics, Basic Medical Sciences, Faculty of Medicine, Kırşehir Ahi Evran University, Kırsehır, Turkey
| | - Alaaddin Coşkun
- Department of Biophysics, Basic Medical Sciences, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
3
|
Chen Z, Zhang X, Fu Y, Jin Y, Weng Y, Bian X, Chen X. Degradation Behaviors of Polylactic Acid, Polyglycolic Acid, and Their Copolymer Films in Simulated Marine Environments. Polymers (Basel) 2024; 16:1765. [PMID: 39000621 PMCID: PMC11244091 DOI: 10.3390/polym16131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) are extensively studied biodegradable polymers. However, the degradation behavior of their copolymer, poly(lactic-co-glycolic acid) (PLGA), in marine environments has not yet been confirmed. In this study, the changes in macroscopic and microscopic morphology, thermal properties, aggregation, and chemical structure of PLA, PGA, PLGA-85, and PLGA-75 (with 85% and 75% LA content) in simulated marine environments were investigated. Results revealed that degradation occurred through hydrolysis of ester bonds, and the degradation rate of PGA was faster than that of PLA. The amorphous region degraded preferentially over the crystalline region, leading to cleavage-induced crystallization and decreased thermal stability of PLA, PLGA-85, and PLGA-75. The crystal structures of PLGAs were similar to those of PLA, and the higher GA content, the faster was the degradation rate. This study provides a deeper understanding of the seawater degradation behaviors of PLA, PGA, and their copolymers, and provides guidance for the preparation of materials with controllable degradation performance.
Collapse
Affiliation(s)
- Zeyu Chen
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Zhang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ye Fu
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yujuan Jin
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xinchao Bian
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Wang P, Wang M, Wei X, Xie L, Tian L, Yang Z, Zhou Z, Chen H. In vitro and in vivo degradation profile, biocompatibility of poly-L-lactic acid porous microspheres. Int J Biol Macromol 2024; 272:132876. [PMID: 38838887 DOI: 10.1016/j.ijbiomac.2024.132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The objective of this study is to evaluate the in vitro and in vivo degradation profile and biocompatibility of poly-L-lactic acid (PLLA) porous microspheres (PMs) for their potential application as injectable microcarrier or micro-scaffolds materials in the research and clinical use of craniofacial cartilage repair. In this study, PLLA PMs prepared exhibited spherical shape and uniform surface pores followed by 24-week evaluations for degradation behavior and biocompatibility. In vitro degradation analysis encompassed morphological examination, pH monitoring, molecular weight analysis, thermodynamic assessment, and chemical structure analysis. After 12 weeks of in vitro degradation, PMs maintained a regular porous spherical structure. Molecular weight and glass transition temperature of PLLA PMs decreased over time, accompanying with an initial increase and subsequent decrease in crystallinity. Enzymatic degradation caused morphological changes and accelerated degradation in the in vitro studies. Finally, in vivo evaluations involved subcutaneous implantation of PLLA PMs in rats, demonstrating biocompatibility by enhancing type I and type III collagen regeneration as observed in histological analysis. The results demonstrated that PLLA PMs were able to maintain their spherical structure for 12 weeks, promoting the generation of collagen at the implantation site, meeting the time requirements for craniofacial cartilage repair.
Collapse
Affiliation(s)
- Peng Wang
- The Department of Orthopedic Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China; The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical Univesity, Xinxiang 453003, China
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical Univesity, Xinxiang 453003, China
| | - Xiangjuan Wei
- The Department of Orthopedic Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Liqin Xie
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical Univesity, Xinxiang 453003, China
| | - Linqiang Tian
- The Department of Orthopedic Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Zhijun Yang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical Univesity, Xinxiang 453003, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical Univesity, Xinxiang 453003, China.
| |
Collapse
|
5
|
Shin JW, Kim DJ, Jang TM, Han WB, Lee JH, Ko GJ, Yang SM, Rajaram K, Han S, Kang H, Lim JH, Eom CH, Bandodkar AJ, Min H, Hwang SW. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems. NANO-MICRO LETTERS 2024; 16:102. [PMID: 38300387 PMCID: PMC10834929 DOI: 10.1007/s40820-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/02/2024]
Abstract
Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Semiconductor R&D Center, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix, 2091, Gyeongchung-daero, Bubal-eup, Icheon-si, Gyeonggi-do, 17336, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Kaveti Rajaram
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hanul Min
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Ng F, Nicoulin V, Peloso C, Curia S, Richard J, Lopez-Noriega A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55495-55509. [PMID: 38011651 DOI: 10.1021/acsami.2c13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This paper presents the in vitro and in vivo degradation of BEPO, a marketed in situ forming depot technology used for the formulation of long-acting injectables. BEPO is composed of a solution of a blend of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) triblock and diblock in an organic solvent, where a therapeutic agent may be dissolved or suspended. Upon contact with an aqueous environment, the solvent diffuses and the polymers precipitate, entrapping the drug and forming a reservoir. Two representative BEPO compositions were subjected to a 3-month degradation study in vitro by immersion in phosphate-buffered saline at 37 °C and in vivo after subcutaneous injection in minipig. The material erosion rate, as a surrogate of the bioresorption, determined via the depot weight loss, changed substantially, depending on the composition and content of polymers within the test item. The swelling properties and internal morphology of depots were shown to be highly dependent on the solvent exchange rate during the precipitation step. Thermal analyses displayed an increase of the depot glass transition temperature over the degradation process, with no crystallinity observed at any stage. The chemical composition of degraded depots was determined by 1H NMR and gel permeation chromatography and demonstrated an enrichment in homopolymers, i.e., free PLA and (m)PEG, to the detriment of (m)PEG-PLA copolymers in both formulations. It was observed that the relative ratio of the degradants within the depot is driven by the initial polymer composition. Interestingly, in vitro and in vivo results showed very good qualitative consistency. Taken together, the outcomes from this study demonstrate that the different hydrolytic degradation behaviors of the BEPO compositions can be tuned by adjusting the polymer composition of the formulation.
Collapse
Affiliation(s)
- Feifei Ng
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Victor Nicoulin
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Silvio Curia
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Joël Richard
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | |
Collapse
|
7
|
Matsuno H, Eto R, Fujii M, Totani M, Tanaka K. Effect of segmental motion on hydrolytic degradation of polyglycolide in electro-spun fiber mats. SOFT MATTER 2023; 19:7459-7467. [PMID: 37750204 DOI: 10.1039/d3sm00613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recently, environmentally degradable polymers have received great attention from the perspective of sustaining the aquatic environment. To control the degradation behavior of solid polymer materials in an aqueous phase, it is crucial to better understand the thermal molecular motion of polymer chains in water. We herein focus on polyglycolide (PGA), which is one of the representative aliphatic polyesters that are hydrolytically degradable. Three kinds of fiber mats of PGA with different fiber diameters and comparable crystallinities were prepared using an electrospinning method. Our choice of fiber mats was because the ratio of the surface area, where the hydrolytic degradation starts to occur, to the volume was larger than that for the films. Dynamic mechanical analysis (DMA) enabled us to gain direct access to the dynamic glass transition temperature (Tgα) of PGA in the fiber mats both in dry gaseous nitrogen and liquid water. The Tgα value varied not only with the presence of water molecules, but also with the fiber diameter, or the specific surface area. The degradation behavior of PGA fiber mats was examined by immersing the samples in phosphate-buffered saline at various temperatures. When the segmental motion of PGA in the fiber mats was released, the apparent crystallinity of the mats increased, meaning that PGA amorphous chains were cleaved and thus partially eluted into the aqueous phase. It was also shown that partially cleaved chains crystallized.
Collapse
Affiliation(s)
- Hisao Matsuno
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Reiki Eto
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Misato Fujii
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Masayasu Totani
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Han W, Liao X. Degradation of biobased poly(ethylene 2,5‐furandicarboxylate) and polyglycolide acid blends under lipase conditions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Weiqiang Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Xia Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
10
|
Lin Z, Chen H, Xu J, Wang J, Wang H, Huang S, Xu S. A Review of the Release Profiles and Efficacies of Chemotherapy Drug-Loaded Electrospun Membranes. Polymers (Basel) 2023; 15:polym15020251. [PMID: 36679132 PMCID: PMC9865042 DOI: 10.3390/polym15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Electrospun fibrous membranes loaded with chemotherapy drugs have been broadly studied, many of which have had promising data demonstrating therapeutic effects on cancer cell inhibition, tumor size reduction, the life extension of tumor-bearing animals, and more. Nevertheless, their drug release profiles are difficult to predict since their degradation pattern varies with crystalline polymers. In addition, there is room for improving their release performances, optimizing the release patterns, and achieving better therapeutic outcomes. In this review, the key factors affecting electrospun membrane drug release profiles have been systematically reviewed. Case studies of the release profiles of typical chemotherapy drugs are carried out to determine the preferred polymer choices and techniques to achieve the expected prolonged or enhanced release profiles. The therapeutic effects of these electrospun, chemo-drug-loaded membranes are also discussed. This review aims to assist in the design of future drug-loaded electrospun materials to achieve preferred release profiles with enhanced therapeutic efficacies.
Collapse
Affiliation(s)
- Zhenyu Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jiawei Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huijing Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shifen Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-755-26531165
| |
Collapse
|
11
|
Deng S, Chen A, Chen W, Lai J, Pei Y, Wen J, Yang C, Luo J, Zhang J, Lei C, Varma SN, Liu C. Fabrication of Biodegradable and Biocompatible Functional Polymers for Anti-Infection and Augmenting Wound Repair. Polymers (Basel) 2022; 15:polym15010120. [PMID: 36616470 PMCID: PMC9823642 DOI: 10.3390/polym15010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
The problem of bacteria-induced infections threatens the lives of many patients. Meanwhile, the misuse of antibiotics has led to a significant increase in bacterial resistance. There are two main ways to alleviate the issue: one is to introduce antimicrobial agents to medical devices to get local drug releasing and alleviating systemic toxicity and resistance, and the other is to develop new antimicrobial methods to kill bacteria. New antimicrobial methods include cationic polymers, metal ions, hydrophobic structures to prevent bacterial adhesion, photothermal sterilization, new biocides, etc. Biodegradable biocompatible synthetic polymers have been widely used in the medical field. They are often used in tissue engineering scaffolds as well as wound dressings, where bacterial infections in these medical devices can be serious or even fatal. However, such materials usually do not have inherent antimicrobial properties. They can be used as carriers for drug delivery or compounded with other antimicrobial materials to achieve antimicrobial effects. This review focuses on the antimicrobial behavior, preparation methods, and biocompatibility testing of biodegradable biocompatible synthetic polymers. Degradable biocompatible natural polymers with antimicrobial properties are also briefly described. Finally, the medical applications of these polymeric materials are presented.
Collapse
Affiliation(s)
- Shuhua Deng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
- Correspondence: (A.C.); (C.L.)
| | - Weijia Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yameng Pei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahua Wen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Can Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Swastina Nath Varma
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
- Correspondence: (A.C.); (C.L.)
| |
Collapse
|
12
|
Investigation of Cell Adhesion and Cell Viability of the Endothelial and Fibroblast Cells on Electrospun PCL, PLGA and Coaxial Scaffolds for Production of Tissue Engineered Blood Vessel. J Funct Biomater 2022; 13:jfb13040282. [PMID: 36547542 PMCID: PMC9782893 DOI: 10.3390/jfb13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Endothelialization of artificial scaffolds is considered an effective strategy for increasing the efficiency of vascular transplantation. This study aimed to compare the biophysical/biocompatible properties of three different biodegradable fibrous scaffolds: Poly (ɛ-caprolactone) (PCL) alone, Poly Lactic-co-Glycolic Acid (PLGA) alone (both processed using Spraybase® electrospinning machine), and Coaxial scaffold where the fiber core and sheath was made of PCL and PLGA, respectively. Scaffold structural morphology was assessed by scanning electron microscope and tensile testing was used to investigate the scaffold tension resistance over time. Biocompatibility studies were carried out with human umbilical vein endothelial cells (HUVEC) and human vascular fibroblasts (HVF) for which cell viability (and cell proliferation over a 4-day period) and cell adhesion to the scaffolds were assessed by cytotoxicity assays and confocal microscopy, respectively. Our results showed that all biodegradable polymeric scaffolds are a reliable host to adhere and promote proliferation in HUVEC and HVF cells. In particular, PLGA membranes performed much better adhesion and enhanced cell proliferation compared to control in the absence of polymers. In addition, we demonstrate here that these biodegradable membranes present improved mechanical properties to construct potential tissue-engineered vascular graft.
Collapse
|
13
|
Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering approaches for cardiac organoid formation and their characterization. Transl Res 2022; 250:46-67. [PMID: 35995380 PMCID: PMC10370285 DOI: 10.1016/j.trsl.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Cardiac organoids are 3-dimensional (3D) structures composed of tissue or niche-specific cells, obtained from diverse sources, encapsulated in either a naturally derived or synthetic, extracellular matrix scaffold, and include exogenous biochemical signals such as essential growth factors. The overarching goal of developing cardiac organoid models is to establish a functional integration of cardiomyocytes with physiologically relevant cells, tissues, and structures like capillary-like networks composed of endothelial cells. These organoids used to model human heart anatomy, physiology, and disease pathologies in vitro have the potential to solve many issues related to cardiovascular drug discovery and fundamental research. The advent of patient-specific human-induced pluripotent stem cell-derived cardiovascular cells provide a unique, single-source approach to study the complex process of cardiovascular disease progression through organoid formation and incorporation into relevant, controlled microenvironments such as microfluidic devices. Strategies that aim to accomplish such a feat include microfluidic technology-based approaches, microphysiological systems, microwells, microarray-based platforms, 3D bioprinted models, and electrospun fiber mat-based scaffolds. This article discusses the engineering or technology-driven practices for making cardiac organoid models in comparison with self-assembled or scaffold-free methods to generate organoids. We further discuss emerging strategies for characterization of the bio-assembled cardiac organoids including electrophysiology and machine-learning and conclude with prospective points of interest for engineering cardiac tissues in vitro.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas.
| | - Sylvia L Natividad-Diaz
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Andie E Padilla
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Aibhlin A Esparza
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Salma P Ramirez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | | | | |
Collapse
|
14
|
Chen HW, Kuo YL, Chen CH, Chiou CS, Chen WT, Lai YH. Biocompatibile nanofiber based membranes for high-efficiency filtration of nano-aerosols with low air resistance. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 167:695-707. [PMID: 36185493 PMCID: PMC9510075 DOI: 10.1016/j.psep.2022.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PMs) from combustion emissions (traffic, power plant, and industries) and the novel coronavirus (COVID-19) pandemic have recently enhanced the development of personal protective equipment against airborne pathogens to protect humans' respiratory system. However, most commercial face masks still cannot simultaneously achieve breathability and high filtration of PMs, bacteria, and viruses. This study used the electrospinning method with polyimide (PI) and polyethersulfone (PES) solutions to form a nanofiber membrane with low-pressure loss and high biocompatibility for high-efficiency bacteria, viruses, and nano-aerosol removal. Conclusively, the optimized nano-sized PI/PES membrane (0.1625 m2/g basis weight) exhibited conspicuous performance for the highest filtration efficiency towards PM from 50 to 500 nm (99.74 %), good filter quality of nano-aerosol (3.27 Pa-1), exceptional interception ratio against 100-nm airborne COVID-19 (over 99 %), and non-toxic effect on the human body (107 % cell viability). The PI/PES nanofiber membrane required potential advantage to form a medical face mask because of its averaged 97 % BEF on Staphylococcus aureus filiation and ultra-low pressure loss of 0.98 Pa by referring ASTM F2101-01. The non-toxic PI/PES filters provide a new perspective on designing excellent performance for nano-aerosols from air pollution and airborne COVID-19 with easy and comfortable breathing under ultra-low air flow resistance.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Yu-Lin Kuo
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Chien-Hua Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Chyow-San Chiou
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Wei-Ting Chen
- Department of Cosmetic Application & Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan, ROC
| | - Yi-Hung Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
15
|
Tenchurin TK, Rodina AV, Saprykin VP, Gorshkova LV, Mikhutkin AA, Kamyshinsky RA, Yakovlev DS, Vasiliev AL, Chvalun SN, Grigoriev TE. The Performance of Nonwoven PLLA Scaffolds of Different Thickness for Stem Cells Seeding and Implantation. Polymers (Basel) 2022; 14:polym14204352. [PMID: 36297930 PMCID: PMC9610477 DOI: 10.3390/polym14204352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/24/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
The 3D reconstruction of 100 μm- and 600 μm-thick fibrous poly-L/L-lactide scaffolds was performed by confocal laser scanning microscopy and supported by scanning electron microscopy and showed that the density of the fibers on the side adjacent to the electrode is higher, which can affect cell diffusion, while the pore size is generally the same. Bone marrow mesenchymal stem cells cultured in a 600 μm-thick scaffold formed colonies and produced conditions for cell differentiation. An in vitro study of stem cells after 7 days revealed that cell proliferation and hepatocyte growth factor release in the 600 μm-thick scaffold were higher than in the 100 μm-thick scaffold. An in vivo study of scaffolds with and without stem cells implanted subcutaneously onto the backs of recipient mice was carried out to test their biodegradation and biocompatibility over a 0-3-week period. The cells seeded onto the 600 μm-thick scaffold promoted significant neovascularization in vivo. After 3 weeks, a significant number of donor cells persisted only on the inside of the 600 μm-thick scaffold. Thus, the use of bulkier matrices allows to prolong the effect of secretion of growth factors by stem cells during implantation. These 600 μm-thick scaffolds could potentially be utilized to repair and regenerate injuries with stem cell co-culture for vascularization of implant.
Collapse
Affiliation(s)
| | - Alla V. Rodina
- National Research Centre “Kurchatov Institute”, 123098 Moscow, Russia
| | - Vladimir P. Saprykin
- Natural Sciences Department, Moscow Region State University, 105005 Moscow, Russia
| | - Lada V. Gorshkova
- National Research Centre “Kurchatov Institute”, 123098 Moscow, Russia
| | | | - Roman A. Kamyshinsky
- National Research Centre “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS, 119333 Moscow, Russia
| | - Dmitry S. Yakovlev
- Russian Quantum Center, Skolkovo, 121205 Moscow, Russia
- Institute of Nano-, Bio-, Information, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, State University, 141707 Dolgoprudny, Russia
| | - Alexander L. Vasiliev
- National Research Centre “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS, 119333 Moscow, Russia
- Institute of Nano-, Bio-, Information, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, State University, 141707 Dolgoprudny, Russia
- Correspondence: ; Tel.: +7-910-4130115
| | - Sergey N. Chvalun
- National Research Centre “Kurchatov Institute”, 123098 Moscow, Russia
| | - Timofey E. Grigoriev
- National Research Centre “Kurchatov Institute”, 123098 Moscow, Russia
- Institute of Nano-, Bio-, Information, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, State University, 141707 Dolgoprudny, Russia
| |
Collapse
|
16
|
Huang W, Wen X, Zhou J, Zhang X. Understanding the hydrolysis mechanism on segments and aggregate structures: Corrosion-tailored poly (lactic acid) deriving copolymers with δ-valerolactone. Int J Biol Macromol 2022; 222:961-971. [PMID: 36181885 DOI: 10.1016/j.ijbiomac.2022.09.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Poly (L-lactic acid) (PLLA) based copolymers modified with δ-valerolactone (DVL) through random copolymerization (PVLA-R) and block copolymerization (PVLA-B) with various DVL content were prepared to investigate their degradation regulation and mechanism. Chemical structure, thermal properties, hydrophilicity, crystallization as well as the crystal defects of the obtained copolymers were respectively confirmed. Degradation regulation of both PVLA-R and PVLA-B, such molecular weight and pH value changes of PLLA based copolymers were investigated via vitro degradation method. In order to further explore the degradation principle of the two copolymers, their degradation residues at different stages were systematically studied. The addition and increasing content of DVL disturbs the regularity of original PLLA molecular structure, resulting in accelerating degradation of copolymers. Compared with amorphous region, the crystalline region of both two copolymers has better corrosion resistance, which could be confirmed by increased melting point and crystallinity of both PVLA-R and PVLA-B degradation residues. PVLA-B copolymers show relatively superior degradation resistance mainly due to their higher molecular weight, crystallinity and hydrophobic index than PVLA-R copolymers.
Collapse
Affiliation(s)
- Wenjian Huang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xin Wen
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jin Zhou
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xuzhen Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
17
|
Mao Y, Zeng Y, Meng Y, Li Y, Wang L. GelMA and aliphatic polyesters Janus nanofibrous membrane with lubrication/anti-fibroblast barrier functions for abdominal adhesion prevention. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Crystallization Behavior and Morphology of Biodegradable Poly(ε-caprolactone)/Reduced Graphene Oxide Scaffolds. Biomimetics (Basel) 2022; 7:biomimetics7030116. [PMID: 36134920 PMCID: PMC9496191 DOI: 10.3390/biomimetics7030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Morphology, thermal properties and the non-isothermal melt crystallization kinetics of biodegradable poly(ε-caprolactone) (PCL)/reduced graphene oxide (rGO) scaffolds are studied with differential scanning calorimetry (DSC) at various cooling rates (5, 10, 15 and 20 °C/min). Thermally induced phase separation was used to manufacture the scaffolds (TIPS). The micrographs show a more homogeneous and defined morphology with larger pores and thicker pore walls. The melting temperature (Tm), melting enthalpy (ΔHm), crystallization enthalpy (ΔHc) and degree of crystallinity (Xc) increased with the addition of rGO, suggesting larger and more perfect crystalline structures. The degree of crystallinity increased with the presence of rGO. The crystallization peak shifted to higher temperatures as the rGO concentration increased independently of the cooling rates. The peak shifted to lower temperatures as the cooling rate increased with the same rGO composition. The values of t1/2 (time needed to reach 50% crystallization) were lower for scaffolds with rGO. The values of the crystallization rate coefficient were higher when the porous support contained rGO, which indicates that their crystallization systems are faster. The activation energy obtained with the Kissinger method decreased with the presence of rGO. The results indicate that reduced graphene oxide acts as a nucleating agent in the non-isothermal melt crystallization process. The addition of small quantities of rGO changes their thermal properties with which they can be modified for application in the field of tissue engineering.
Collapse
|
19
|
Abdalla HB, Marchioro RR, Galvão KEA, Teixeira LN, Kantovitz KR, Millás ALGM, Nociti FH. Polycaprolactone scaffolds as a biomaterial for cementoblast delivery: An in vitro study. J Periodontal Res 2022; 57:1014-1023. [PMID: 35930685 DOI: 10.1111/jre.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To define the potential of polycaprolactone (PCL) scaffold for cementoblast delivery. BACKGROUND Dental cementum is critical for tooth attachment and position, and its regenerative capabilities remain unpredictable. METHODS PCL scaffolds were manufactured by the electrospinning technique at 10% and 20% (w/v) and seeded with cementoblasts (OCCM-30). Scaffolds were characterized for their morphology and biological performance by scanning electron microscopy (SEM), confocal and conventional histology, cytocompatibility (PrestoBlue assay), gene expression (type I collagen - Col1; bone sialoprotein - Bsp; runt-related transcription factor 2 - Runx-2; alkaline phosphatase - Alpl; osteopontin - Opn; osteocalcin - Ocn, osterix - Osx), and the potential to induce extracellular matrix deposition and mineralization in vitro. RESULTS Overall, data analysis showed that PCL scaffolds allowed cell adhesion and proliferation, modulated the expression of key markers of cementoblasts, and led to enhanced extracellular matrix deposition and calcium deposition as compared to the control group. CONCLUSION Altogether, our findings allow concluding that PCL scaffolds are a viable tool to culture OCCM-30 cells, leading to an increased potential to promote mineralization in vitro. Further studies should be designed in order to define the clinical relevance of cementoblast-loaded PCL scaffolds to promote new cementum formation.
Collapse
|
20
|
Ivanova TA, Golubeva EN. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Li X, Pan J, Li Y, Xu F, Hou J, Yang G, Zhou S. Development of a Localized Drug Delivery System with a Step-by-Step Cell Internalization Capacity for Cancer Immunotherapy. ACS NANO 2022; 16:5778-5794. [PMID: 35324153 DOI: 10.1021/acsnano.1c10892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
How to precisely reprogram tumor-associated macrophages (TAMs) and combine them with immunogenic cell death (ICD) is still a great challenge in enhancing the antitumor immunotherapeutic effect. Here, we developed a localized drug delivery system with a step-by-step cell internalization ability based on a hierarchical-structured fiber device. The chemotherapeutic agent-loaded nanomicelles are encapsulated in the internal chambers of the fiber, which could first be internalized by actively targeting tumor cells to induce ICD. Next, the rod-like microparticles can be gradually formed from long to short shape through hydrolysis of the fiber matrix in the tumor microenvironment and selectively phagocytosed by TAMs but not to tumor cells when the length becomes less than 3 μm. The toll-like receptors 7 (TLR7) agonist imiquimod could be released from these microparticles in the cytoplasm to reprogram M2-like TAMs. The in vivo results exhibit that this localized system can synergistically induce an antitumor immune response and achieve an excellent antitumor efficiency. Therefore, this system will provide a promising treatment platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Xilin Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yan Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
22
|
Rezaei M, Hassanzadeh Nemati N, Mehrabani D, Komeili A. Characterization of sodium carboxymethyl cellulose/calcium alginate scaffold loaded with curcumin in skin tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohadeseh Rezaei
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz Iran
- Center of Comparative and Experimental Medicine Shiraz University of Medical Sciences Shiraz Iran
- Li Ka Shing Center for Health Research and Innovation University of Alberta Edmonton Canada
| | - Ali Komeili
- Applied Biophotonics Research Center Science and Research Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
23
|
Wille I, Harre J, Oehmichen S, Lindemann M, Menzel H, Ehlert N, Lenarz T, Warnecke A, Behrens P. Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Front Bioeng Biotechnol 2022; 10:776890. [PMID: 35141211 PMCID: PMC8819688 DOI: 10.3389/fbioe.2022.776890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.
Collapse
Affiliation(s)
- Inga Wille
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Oehmichen
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Lindemann
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Menzel
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
24
|
Sakura K, Sasai M, Mino T, Uyama H. Non-Woven Sheet Containing Gemcitabine: Controlled Release Complex for Pancreatic Cancer Treatment. Polymers (Basel) 2022; 14:polym14010168. [PMID: 35012190 PMCID: PMC8747259 DOI: 10.3390/polym14010168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
The 5-year survival rate for pancreatic cancer remains low, and the development of new methods for its treatment is actively underway. After the surgical treatment of pancreatic cancer, recurrence and peritoneal dissemination can be prevented by long-term local exposure to appropriate drug concentrations. We propose a novel treatment method using non-woven sheets to achieve this goal. Poly(L-lactic acid) non-woven sheets containing gemcitabine (GEM) were prepared, and GEM sustained release from this delivery system was investigated. Approximately 35% of the GEM dose was released within 30 d. For in vitro evaluation, we conducted a cell growth inhibition test using transwell assays, and significant inhibition of cell growth was observed. The antitumor effects of subcutaneously implanted GEM-containing non-woven sheets were evaluated in mice bearing subcutaneous Panc02 cells, and it was established that the sheets inhibited tumor growth for approximately 28 d. These results suggest the usefulness of GEM-containing non-woven sheets in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kazuma Sakura
- Respiratory Center, Osaka University Hospital, Osaka 565-0871, Japan
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Translational Research, Osaka University Hospital, Osaka 565-0871, Japan;
- Correspondence: ; Tel.: +81-6-6210-8289
| | - Masao Sasai
- Division of Translational Research, Osaka University Hospital, Osaka 565-0871, Japan;
| | - Takayuki Mino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (T.M.); (H.U.)
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (T.M.); (H.U.)
| |
Collapse
|
25
|
Terranova L, Louvrier A, Hébraud A, Meyer C, Rolin G, Schlatter G, Meyer F. Highly Structured 3D Electrospun Conical Scaffold: A Tool for Dental Pulp Regeneration. ACS Biomater Sci Eng 2021; 7:5775-5787. [PMID: 34846849 DOI: 10.1021/acsbiomaterials.1c00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New procedures envisioned for dental pulp regeneration after pulpectomy include cell homing strategy. It involves host endogenous stem cell recruitment and activation. To meet this cell-free approach, we need to design a relevant scaffold to support cell migration from tissues surrounding the dental root canal. A composite membrane made of electrospun poly(lactic acid) nanofibers and electrosprayed polycaprolactone with tannic acid (TA) microparticles which mimics the architecture of the extracellular matrix was first fabricated. After rolling the membrane in the form of a 3D conical scaffold and subsequently coating it with gelatin, it can be directly inserted into the root canal. The porous morphology of the construct was characterized by SEM at different length scales. It was shown that TA was released from the 3D conical scaffold after 2 days in PBS at 37 °C. Biocompatibility studies were first assessed by seeding human dental pulp stem cells (DPSCs) on planar membranes coated or not coated with gelatin to compare the surfaces. After 24 h, the results highlighted that the gelatin-coating increased the membrane biocompatibility and cell viability. Similar DPSC morphology and proliferation on both membrane surfaces were observed. The culture of DPSCs on conical scaffolds showed cell colonization in the whole cone volume, proving that the architecture of the conical scaffold was suitable for cell migration.
Collapse
Affiliation(s)
- Lisa Terranova
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Aurélien Louvrier
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France
| | - Anne Hébraud
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Christophe Meyer
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France
| | - Gwenaël Rolin
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France.,Inserm CIC-1431, CHU Besançon, Besançon F-25000, France
| | - Guy Schlatter
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Florent Meyer
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Pôle de médecine et chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
26
|
Miao Y, Cui H, Dong Z, Ouyang Y, Li Y, Huang Q, Wang Z. Structural Evolution of Polyglycolide and Poly(glycolide -co-lactide) Fibers during In Vitro Degradation with Different Heat-Setting Temperatures. ACS OMEGA 2021; 6:29254-29266. [PMID: 34746613 PMCID: PMC8567347 DOI: 10.1021/acsomega.1c04974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The structural evolution of polyglycolide (PGA) and poly(glycolide-co-lactide) (P(GA-co-LA)) with 8% LA content fibers with different heat-setting temperatures was investigated during in vitro degradation using WAXD, SAXS, and mechanical property tests. It was found that the PGA fiber was more susceptible to the degradation process than the P(GA-co-LA) fiber and a higher heat-setting temperature reduced the degradation rate of the two samples. The weight and mechanical properties of the samples showed a gradual decrease during degradation. We proposed that the degradation of PGA and P(GA-co-LA) fibers proceeded in four stages. A continuous increase in crystallinity during the early stage of degradation and a gradual decline during the later period indicated that preferential hydrolytic degradation occurred in the amorphous regions, followed by a further degradation in the crystalline regions. The cleavage-induced crystallization occurred during the later stage of degradation, contributing to an appreciable decrease in the long period and lamellar thickness of both PGA and P(GA-co-LA) samples. The introduction of LA units into the PGA skeleton reduced the difference in the degradation rate between the crystalline and amorphous regions, and they were simultaneously degraded in the early stage of degradation, leading to a degradation mechanism different from that of the PGA fiber.
Collapse
Affiliation(s)
- Yushuang Miao
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | | | - Zhimin Dong
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yi Ouyang
- Department
of Radiation Oncology & State Key Laboratory of Oncology in South
China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yiguo Li
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qing Huang
- China
Textile Academy, Beijing 100025, China
| | - Zongbao Wang
- Ningbo
Key Laboratory of Specialty Polymers, School of Materials Science
and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
27
|
Carazzai R, Brizuela Guerra N, Corbellini Henckes NA, dos Santos de Oliveira F, Obino Cirne-Lima E, Loureiro dos Santos LA. Electrospun natural rubber latex biocomposite for scaffolds in tissue engineering. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211046415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fibrous scaffold along with seed cells are essential players for engineered tissue regeneration. Recently, PLGA/epoxidized poly(isoprene) dense membranes have been evaluated for cell growth and have shown satisfactory results. However, porous and fibrous structures suitable for obtaining 3D supports have not yet been evaluated for the PLGA/epoxidized poly(isoprene). The present work aimed to establish the electrospinning conditions for obtaining electrospun membranes with a smaller diameter of fibers and adequate morphology, which were characterized in vitro by their physical, chemical and biological properties. The best electrospun fibers were obtained from the following conditions: an applied voltage of 15 kV, a needle-collector distance of 20 cm and, a flow rate of 5 mL/h. The functional groups of the polymers involved in the blend did not show any changes. The mechanical properties of the electrospun membranes are within the lower limits known to human skin and some soft tissues. The in vitro degradation test showed a loss of mass of approximately 20% in 28 days. Significant adhesion and proliferation of human adipose–derived mesenchymal stem cells were demonstrated, indicating that there was cellular penetration into the scaffold and proliferation. Therefore, the preliminary results suggest that the electrospun PLGA/epoxidized poly(isoprene) membranes have high potential for application as a 3D tissue engineering scaffold.
Collapse
Affiliation(s)
- Rafael Carazzai
- Advanced Ceramics and Biomaterials Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nayrim Brizuela Guerra
- Advanced Ceramics and Biomaterials Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Area of Exact Sciences and Engineering, University of Caxias do Sul, Caxias do Sul, Brazil
| | | | | | - Elizabeth Obino Cirne-Lima
- Embryology and Cell Differentiation Laboratory, Clinics Hospital the Porto Alegre, Porto Alegre, Brazil
- Veterinary Faculty, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
28
|
Lin C, Liu L, Liu Y, Leng J. Recent developments in next-generation occlusion devices. Acta Biomater 2021; 128:100-119. [PMID: 33964482 DOI: 10.1016/j.actbio.2021.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Transcatheter closure has been widely accepted as a highly effective way to treat abnormal blood flows and/or embolization of thrombus in the heart. It allows the closure of four types of congenital heart defects (CHDs) and stroke-associated left atrial appendage (LAA). The four types of CHDs include atrial septal defect (ASD), patent foramen ovale (PFO), patent ductus arteriosus (PDA), and ventricular septal defect (VSD). Advancements in the materials and configurations of occlusion devices have spurred the transition from open-heart surgery with high complexity and morbidity, or lifelong medication with a high risk of bleeding, to minimally invasive deployment. A variety of occlusion devices have been developed over the past few decades, particularly novel ones represented by biodegradable and 3D-printed occlusion devices, which are considered as next-generation alternatives to conventional Nitinol-based occlusion devices due to biodegradability, customization, and improved biocompatibility. The aim here is to comprehensively review the next-generation occlusion devices in terms of materials, configurations, manufacturing methods, deployment strategies, and (if available) experimental results or clinical data. The current challenges and the direction of future work are also proposed. STATEMENT OF SIGNIFICANCE: Implantation of occlusion devices has become a widely accepted and highly effective treatment for occluding abnormal blood/thrombus flow within the heart. Due to the serious complications such as erosion and displacement of conventional Nitinol-based occluders, next-generation occluders with reduced risk of complications and improved biocompatibility has emerged. Here, we comprehensively review the next-generation occluders developed for atrial septal defect (ASD), patent foramen ovale (PFO), patent ductus arteriosus (PDA), ventricular septal defect (VSD), and left atrial appendage (LAA), with special emphasis on biodegradable occluders. Besides, intelligent materials (e.g., automatically deployable shape memory polymers) and rapid customized manufacturing methods (3D/4D printing) for the fabrication of occluders are also introduced. Lastly, the directions of future work are highlighted.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin 150080, People's Republic of China.
| |
Collapse
|
29
|
Habibizadeh M, Nadri S, Fattahi A, Rostamizadeh K, Mohammadi P, Andalib S, Hamidi M, Forouzideh N. Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering. J Biomed Mater Res A 2021; 109:2237-2254. [PMID: 34132482 DOI: 10.1002/jbm.a.37208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
This study prepared a novel three-dimensional nanocomposite scaffold by the surface modification of PCL/chitosan nanofiber/net with alginate hydrogel microlayer, hoping to have the privilege of both nanofibers and hydrogels simultaneously. Bead free randomly oriented nanofiber/net (NFN) structure composed of chitosan and polycaprolactone (PCL) was fabricated by electrospinning method. The low surface roughness, good hydrophilicity, and high porosity were obtained from the NFN structure. Then, the PCL/chitosan nanofiber/net was coated with a microlayer of alginate containing neurotrophin-3 (NT-3) and conjunctiva mesenchymal stem cells (CJMSCs) as a new stem cell source. According to the cross-sectional FESEM, the scaffold shows a two-layer structure with interconnected pores in the range of 20 μm diameter. The finding revealed that the surface modification of nanofiber/net by alginate hydrogel microlayer caused lower inflammatory response and higher proliferation of CJMSCs than the unmodified scaffold. The initial burst release of NT-3 was 69% in 3 days which followed by a sustained release up to 21 days. The RT-PCR analysis showed that the expression of Nestin, MAP-2, and β-tubulin III genes were increased 6, 5.4, and 8.8-fold, respectively. The results revealed that the surface-modified biomimetic scaffold possesses enhanced biocompatibility and could successfully differentiate CJMSCs to the neuron-like cells.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Center for Applied NanoBioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Pharmacology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Narges Forouzideh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
30
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
31
|
Wang SF, Wu YC, Cheng YC, Hu WW. The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application. Polymers (Basel) 2021; 13:polym13111740. [PMID: 34073347 PMCID: PMC8198519 DOI: 10.3390/polym13111740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/25/2023] Open
Abstract
Composite electrospun fibers were fabricated to develop drug loaded scaffolds to promote bone tissue regeneration. Multi-wall carbon nanotubes (MWCNTs) were incorporated to polylactic acid (PLA) to strengthen electrospun nanofibers. To modulate drug release behavior, different ratios of hydrophilic polyethylene glycol (PEG) were added to composite fibers. Glass transition temperature (Tg) can be reduced by the incorporated PEG to enhance the ductility of the nanofibers. The SEM images and the MTT results demonstrated that composite fibers are suitable scaffolds for cell adhesion and proliferation. Dexamethasone (DEX), an osteogenic inducer, was loaded to PLA/MWCNT/PEG fibers. The surface element analysis performed by XPS showed that fluorine of DEX in pristine PLA fibers was much higher than those of the MWCNT-containing fibers, suggesting that the pristine PLA fibers mainly load DEX on their surfaces, whereas MWCNTs can adsorb DEX with evenly distribution in nanofibers. Drug release experiments demonstrated that the release profiles of DEX were manipulated by the ratio of PEG, and that the more PEG in the nanofibers, the faster DEX was released. When rat bone marrow stromal cells (rBMSCs) were seeded on these nanofibers, the Alizarin Red S staining and calcium quantification results demonstrated that loaded DEX were released to promote osteogenic differentiation of rBMSCs and facilitate mineralized tissue formation. These results indicated that the DEX-loaded PLA/MWCNT/PEG nanofibers not only enhanced mechanical strength, but also promoted osteogenesis of stem cells via the continuous release of DEX. The nanofibers should be a potential scaffold for bone tissue engineering application.
Collapse
Affiliation(s)
- Shih-Feng Wang
- Department of Urology, Cathay General Hospital, Taipei 10603, Taiwan;
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yun-Chung Wu
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City 32001, Taiwan;
| | - Yu-Che Cheng
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Zhongli District, Taoyuan City 32001, Taiwan
- Correspondence: (Y.-C.C.); (W.-W.H.); Tel.: +886-2-86461500 (ext. 2615) (Y.-C.C.); +886-3-4227151 (ext. 34246) (W.-W.H.); Fax: +886-2-26907963 (Y.-C.C.); +886-3-4252296 (W.-W.H.)
| | - Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City 32001, Taiwan;
- Correspondence: (Y.-C.C.); (W.-W.H.); Tel.: +886-2-86461500 (ext. 2615) (Y.-C.C.); +886-3-4227151 (ext. 34246) (W.-W.H.); Fax: +886-2-26907963 (Y.-C.C.); +886-3-4252296 (W.-W.H.)
| |
Collapse
|
32
|
Zhong G, Liu Y, Liu C, Li X, Lin J, Lanzon AL, Zhang H, Chen M. Biological compatibility, thermal and in vitro simulated degradation for poly(p-dioxanone)/poly(lactide-co-glycolide)/poly(ethylene succinate-co-glycolide). J Biomed Mater Res B Appl Biomater 2021; 109:1817-1835. [PMID: 33894107 DOI: 10.1002/jbm.b.34842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023]
Abstract
Bio-absorbable polymers are widely desired to be applied and used as biomaterials for surgery hemostatic and medical tissue engineering devices. Ring-opening copolymerization reaction was applied to synthesize poly(ethylene succinate-co-glycolide) (PES-b-PGA). Stannous octoate was used as a catalyst whereas poly(ethylene succinate) was used as a macro-initiator to react with glycolide. PES-b-PGA was then used as a compatibilizer to prepare the blend biomaterial of PPDO/PLGA/PES-b-PGA by melt blending poly(p-dioxanone) (PPDO) with poly(lactide-co-glycolide) (PLGA). This would enhance the interactions of the inter-molecular chains and intra-molecular segments thus improving the compatibility. To obtain the biomaterial of PPDO/PLGA/PES-b-PGA with a regulated and controlled degradation and/or hydrolysis period, various ratios of PPDO, PLGA, and PES-b-PGA was blended. Behaviors of the thermal and in vitro simulated degradation, biological compatibility, cytotoxicity and subcutaneous implantation of PPDO/PLGA/PES-b-PGA were investigated. The results show that the in vitro hydrolytic degradation cycle is consistent with the wound healing time and that the biomaterial has slight cytotoxicity and it will do good to the cell proliferation, with 1 grade of cytotoxicity and the relative growth rate being the range from 92.5% to 96.2%. The implantation of the biomaterial into the rabbits' ears will not adversely affect the wound healing and the tissues surrounding the implanted sites. Therefore, the biomaterial has good biocompatibility and potential applications in medical tissue engineering devices.
Collapse
Affiliation(s)
- Gang Zhong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Yihao Liu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Canpei Liu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Xu Li
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jingwei Lin
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Thoracic Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Alain Luigi Lanzon
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Mingfeng Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
33
|
Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021; 13:1105. [PMID: 33808492 PMCID: PMC8037451 DOI: 10.3390/polym13071105] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential components. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given application. Depending on this, scaffold materials can be of natural or synthetic origin, degradable or nondegradable. In this review, an overview of various natural and synthetic polymers and their possible composite scaffolds with their physicochemical properties including biocompatibility, biodegradability, morphology, mechanical strength, pore size, and porosity are discussed. The scaffolds fabrication techniques and a few commercially available biopolymers are also tabulated.
Collapse
Affiliation(s)
- M. Sai Bhargava Reddy
- Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India;
| | | | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
- Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | |
Collapse
|
34
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
35
|
Herrero-Herrero M, Gómez-Tejedor JA, Vallés-Lluch A. Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes. Polymers (Basel) 2021; 13:polym13050695. [PMID: 33669032 PMCID: PMC7956480 DOI: 10.3390/polym13050695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) and poly(caprolactone-co-glycolic acid) (PCLGA) solutions were electrospun into membranes with tailored fiber diameter of 1.8 μm. This particular fiber diameter was tuned depending on the used co-polymer by adjusting the electrospinning parameters that mainly influence the fiber diameter. The greatest setting of the fiber diameter was achieved by varying the polymer solution parameters (polymer concentration, solvents and solvents ratio). PLGA was adequately electrospun with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), whereas PCLGA required a polar solvent (such as chloroform) with a lower dielectric constant. Moreover, due to the amorphous morphology of PCLGA, pyridine as salt had to be added to the starting solution to increase its conductivity and make it electrospinnable. Indeed, the electrospinning of this co-polymer presents notable difficulties due to its amorphous structure. Interestingly, PCLGA, having a higher glycolic acid molar fraction than commonly electrospun co-polymers (caprolactone:glycolic acid ratio of 45:55 instead of 90:10), could be successfully electrospun, which has not been reported to date. To an accurate setting of fiber diameter, the voltage and the distance from needle to collector were varied. Finally, the study of the surface tension, conductivity and viscosity of the polymer solutions allowed to correlate these particular characteristics of the solutions with the electrospinning variables so that prior knowledge of them enables predicting the required processing conditions.
Collapse
Affiliation(s)
- María Herrero-Herrero
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.H.-H.); (J.A.G.-T.)
| | - José Antonio Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.H.-H.); (J.A.G.-T.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Ana Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.H.-H.); (J.A.G.-T.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
36
|
Suzuki A, Oshiro Y. Preparation of poly(ethylene-2,6-naphthalate) nanofibers by CO2 laser supersonic drawing. Polym J 2021. [DOI: 10.1038/s41428-020-00460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Smith PP, Boyes SG. Synthesis of amphiphilic block copolymers via ring opening polymerization and reversible
addition‐fragmentation
chain transfer polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrizia P. Smith
- Department of Chemistry Colorado School of Mines Golden Colorado USA
| | - Stephen G. Boyes
- Department of Chemistry The George Washington University Washington District of Columbia USA
| |
Collapse
|
38
|
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021; 12:20417314211028574. [PMID: 34345398 PMCID: PMC8283073 DOI: 10.1177/20417314211028574] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wu
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Jin
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sizhan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangang You
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Barani H, Haseloer A, Mathur S, Klein A. Sustained release of a thiosemicarbazone from antibacterial electrospun poly(lactic‐co‐glycolic acid) fiber mats. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alexander Haseloer
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| | - Sanjay Mathur
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| | - Axel Klein
- Department of Carpet University of Birjand Birjand Iran
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| |
Collapse
|
40
|
Ma Y, Song J, Almassri HNS, Zhang D, Zhang T, Cheng Y, Wu X. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis. Drug Deliv 2020; 27:151-160. [PMID: 31913739 PMCID: PMC6968699 DOI: 10.1080/10717544.2019.1709921] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Minocycline (MINO) is a tetracycline antibiotic effective against most of the bacteria microorganisms related to periodontal disease. Additionally, MINO promotes bone in vitro and in vivo. The objective of the present study was to establish the protocol for the preparation of MINO-loaded poly (lactic-co-glycolic acid) (MINO-PLGA) electrospun membranes and to evaluate their effect on osteogenesis in vitro and in a rat model of periodontitis. The characterization of MINO-PLGA electrospun membranes was assessed by scanning electron microscopy, laser scanning confocal microscopy, and contact angle measurement. The drug release study showed a sustained diffusion of MINO from electrospun membranes over a period of 40 d. The MINO-PLGA membranes containing 2% of the drug exhibited better support of osteoblast proliferation and adhesion and was subsequently used in vivo in an experimental periodontitis model. Its therapeutic potential was evaluated by the measurement of alveolar bone loss (ABL), bone volume analysis, histological analysis, and immunohistochemistry. MINO-PLGA membrane increased alveolar crest height in the periodontitis model, inhibited the expression of the ligand of the receptor activator for nuclear factor-κB (RANKL), and promoted the expression of its inhibitor, osteoprotegerin. The study demonstrated that MINO-PLGA electrospun membranes may be applied to stimulate bone regeneration in periodontitis.
Collapse
Affiliation(s)
- Yihui Ma
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huthayfa N S Almassri
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dan Zhang
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Cheng
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
41
|
Predeina AL, Dukhinova MS, Vinogradov VV. Bioreactivity of decellularized animal, plant, and fungal scaffolds: perspectives for medical applications. J Mater Chem B 2020; 8:10010-10022. [PMID: 33063072 DOI: 10.1039/d0tb01751e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous biomedical applications imply supportive materials to improve protective, antibacterial, and regenerative abilities upon surgical interventions, oncotherapy, regenerative medicine, and others. With the increasing variability of the possible sources, the materials of natural origin are among the safest and most accessible biomedical tools. Animal, plant, and fungal tissues can further undergo decellularization to improve their biocompatibility. Decellularized scaffolds lack the most reactive cellular material, nuclear and cytoplasmic components, that predominantly trigger immune responses. At the same time, the outstanding initial three-dimensional microarchitecture, biomechanical properties, and general composition of the scaffolds are preserved. These unique features make the scaffolds perfect ready-to-use platforms for various biomedical applications, implying cell growth and functionalization. Decellularized materials can be repopulated with various cells upon request, including epithelial, endothelial, muscle and neuronal cells, and applied for structural and functional biorepair within diverse biological sites, including the skin and musculoskeletal, cardiovascular, and central nervous systems. However, the molecular and cellular mechanisms behind scaffold and host tissue interactions remain not fully understood, which significantly restricts their integration into clinical practice. In this review, we address the essential aspects of decellularization, scaffold preparation techniques, and its biochemical composition and properties, which determine the biocompatibility and immunogenicity of the materials. With the integrated evaluation of the scaffold profile in living systems, decellularized animal, plant, and fungal scaffolds have the potential to become essential instruments for safe and controllable biomedical applications.
Collapse
|
42
|
Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol 2020; 11:495-521. [PMID: 32812139 DOI: 10.1007/s13239-020-00482-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current design strategies for small diameter vascular grafts (< 6 mm internal diameter; ID) are focused on mimicking native vascular tissue because the commercially available grafts still fail at small diameters, notably due to development of intimal hyperplasia and thrombosis. To overcome these challenges, various design approaches, material selection, and surface modification strategies have been employed to improve the patency of small-diameter grafts. REVIEW The purpose of this review is to outline various considerations in the development of small-diameter vascular grafts, including material choice, surface modifications to enhance biocompatibility/endothelialization, and mechanical properties of the graft, that are currently being implanted. Additionally, we have taken into account the general vascular physiology, tissue engineering approaches, and collective achievements of the authors in this area. We reviewed both commercially available synthetic grafts (e-PTFE and PET), elastic polymers such as polyurethane and biodegradable and bioresorbable materials. We included naturally occurring materials by focusing on their potential application in the development of future vascular alternatives. CONCLUSION Until now, there are few comprehensive reviews regarding considerations in the design of small-diameter vascular grafts in the literature. Here-in, we have discussed in-depth the various strategies employed to generate engineered vascular graft due to their high demand for vascular surgeries. While some TEVG design strategies have shown greater potential in contrast to autologous or synthetic ePTFE conduits, many are still hindered by high production cost which prevents their widespread adoption. Nonetheless, as tissue engineers continue to develop on their strategies and procedures for improved TEVGs, soon, a reliable engineered graft will be available in the market. Hence, we anticipate a viable TEVG with resorbable property, fabricated via electrospinning approach to hold a greater potential that can overcome the challenges observed in both autologous and allogenic grafts. This is because they can be mechanically tuned, incorporated/surface-functionalized with bioactive molecules and mass-manufactured in a reproducible manner. It is also found that most of the success in engineered vascular graft approaching commercialization is for large vessels rather than small-diameter grafts used as cardiovascular bypass grafts. Consequently, the field of vascular engineering is still available for future innovators that can take up the challenge to create a functional arterial substitute.
Collapse
Affiliation(s)
- Francis O Obiweluozor
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| | - Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Do-Wan Kim
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Hwa-Jin Cho
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - In Seok Jeong
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
43
|
Low YJ, Andriyana A, Ang BC, Zainal Abidin NI. Bioresorbable and degradable behaviors of
PGA
: Current state and future prospects. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Jie Low
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Andri Andriyana
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Bee Chin Ang
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Chemical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Nor Ishida Zainal Abidin
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
44
|
Zhang HY, Jiang HB, Kim JE, Zhang S, Kim KM, Kwon JS. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration. J Mech Behav Biomed Mater 2020; 112:104061. [PMID: 32889335 DOI: 10.1016/j.jmbbm.2020.104061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
Considering the inferior mechanical properties of the current bioresorbable polymers, a novel bioresorbable magnesium-reinforced polylactide (PLA) membrane was designed for the application in critical defect sites in guided bone/tissue regeneration. The PLA-FAZ91 membrane was fabricated by combining two PLA membranes with a fluoride-coated AZ91 (9 wt% Al, 1 wt% Zn) (FAZ91) magnesium alloy core by hot pressing. A combined double-layered PLA membrane was used as the control group. A three-point bending test was performed to compare their maximum load and stiffness. Samples were immersed in the HBSS for 20 weeks, and their weight loss percentages were recorded, and a three-point bending test was performed after immersion. An ion release test was performed by immersing samples in the HBSS for 4 weeks and determining the pH and ion concentrations of the HBSS. Cell viability was tested by culturing pre-osteoblast cells with sample extracts in the culture medium obtained from degraded samples. As a result, PLA-FAZ91 showed a significantly higher maximum load and stiffness than those of the non-reinforced PLA membrane. The weight loss of PLA-FAZ91 was much faster, as FAZ91 showed major degradation and was completely degraded after 16-20 weeks of immersion. The degradation of the PLA wrap was accelerated by FAZ91. The mechanical superiority of PLA-FAZ91 over PLA endured for at least 3 weeks during immersion. The pH, magnesium- and fluoride-ion concentration in the PLA-FAZ91 group increased at an appropriate rate. The cell viability was not adversely affected by the addition of FAZ91 to PLA. Therefore, the bioresorbable magnesium-reinforced PLA membrane has the potential to be used as a good alternative to pure PLA membrane in guided bone/tissue regeneration.
Collapse
Affiliation(s)
- Hao Yang Zhang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Heng Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Ji-Eun Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - ShuXin Zhang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, Seou, 03722, Republic of Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea; BK21 PLUS Project, Yonsei University College of Dentistry, Seou, 03722, Republic of Korea.
| |
Collapse
|
45
|
Chor A, Gonçalves RP, Costa AM, Farina M, Ponche A, Sirelli L, Schrodj G, Gree S, de Andrade LR, Anselme K, Dias ML. In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration. Polymers (Basel) 2020; 12:polym12081853. [PMID: 32824776 PMCID: PMC7465081 DOI: 10.3390/polym12081853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has been used in the field of tissue engineering as a scaffold due to its good biocompatibility, biodegradability and mechanical strength. With the aim to explore the degradability of PLGA electrospun nonwoven structures for oral mucosa tissue engineering applications, non-irradiated and gamma irradiated nonwovens were immersed in three different solutions, in which simulated body fluid (SBF) and artificial saliva are important for future oral mucosa tissue engineering. The nonwovens were immersed for 7, 15 and 30 days in SBF, culture media (DMEM) and artificial saliva at 37 °C. Before immersion in the solutions, the dosage of 15 kGy was applied for sterilization in one assay and compared with non-irradiated samples at the same timepoints. Samples were characterized using different techniques such as scanning electron microscopy (SEM), differential scanning calorimetric (DSC) and gel permeation chromatography (GPC) to evaluate the nonwoven degradation and Fourier-transform infrared spectroscopy (FTIR) to evaluate the chain scissions. Our results showed that PLGA nonwovens were constituted by semicrystalline fibers with moderate degradation properties up to thirty days. The non-irradiated samples exhibited slower kinetics of degradation than irradiated nonwovens. For immersion times longer than 7 days in the three different solutions, the mean diameter of irradiated fibers stayed in the same range, but significantly different from the control sample. On non-irradiated samples, the degradation kinetics was slower and the plateau in the diameter value was only attained after 30 days of immersion in the fluids. Plasticization (fluid absorption into the fiber structure) occurred in the bulk material, as confirmed by a decrease in Tg observed by DSC analyses of non-irradiated and irradiated nonwovens, in comparison with the respective controls. In addition, artificial saliva showed a higher capacity of influencing PLGA crystallization than SBF and DMEM. FTIR analyses showed typical PLGA chemical functional groups changes. These results will be important for future application of those PLGA electrospun nonwovens for oral mucosa regeneration.
Collapse
Affiliation(s)
- Ana Chor
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.C.); (A.M.C.); (M.F.); (L.R.d.A.)
| | - Raquel Pires Gonçalves
- Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; (R.P.G.); (L.S.)
| | - Andrea Machado Costa
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.C.); (A.M.C.); (M.F.); (L.R.d.A.)
| | - Marcos Farina
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.C.); (A.M.C.); (M.F.); (L.R.d.A.)
| | - Arnaud Ponche
- The Mulhouse Materials Science Institute (IS2M), CNRS, University of Haute-Alsace, CNRS, UMR 7361, F-68100 Mulhouse, France; (A.P.); (G.S.); (S.G.); (K.A.)
- University of Strasbourg, F-67081 Strasbourg, France
| | - Lys Sirelli
- Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; (R.P.G.); (L.S.)
| | - Gautier Schrodj
- The Mulhouse Materials Science Institute (IS2M), CNRS, University of Haute-Alsace, CNRS, UMR 7361, F-68100 Mulhouse, France; (A.P.); (G.S.); (S.G.); (K.A.)
- University of Strasbourg, F-67081 Strasbourg, France
| | - Simon Gree
- The Mulhouse Materials Science Institute (IS2M), CNRS, University of Haute-Alsace, CNRS, UMR 7361, F-68100 Mulhouse, France; (A.P.); (G.S.); (S.G.); (K.A.)
- University of Strasbourg, F-67081 Strasbourg, France
| | - Leonardo Rodrigues de Andrade
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.C.); (A.M.C.); (M.F.); (L.R.d.A.)
| | - Karine Anselme
- The Mulhouse Materials Science Institute (IS2M), CNRS, University of Haute-Alsace, CNRS, UMR 7361, F-68100 Mulhouse, France; (A.P.); (G.S.); (S.G.); (K.A.)
- University of Strasbourg, F-67081 Strasbourg, France
| | - Marcos Lopes Dias
- Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; (R.P.G.); (L.S.)
- Correspondence:
| |
Collapse
|
46
|
Joy N, Samavedi S. Identifying Specific Combinations of Matrix Properties that Promote Controlled and Sustained Release of a Hydrophobic Drug from Electrospun Meshes. ACS OMEGA 2020; 5:15865-15876. [PMID: 32656407 PMCID: PMC7345396 DOI: 10.1021/acsomega.0c00954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Despite advances in the development of degradable polymers for drug delivery, effective translation of drug-loaded materials is often hindered due to a poor understanding of matrix property combinations that promote controlled and sustained release. In this study, we investigated the influence of dominant factors on the release of a hydrophobic glucocorticoid dexamethasone (DEX) from electrospun meshes. Polycaprolactone meshes released 98% of the drug within 24 h, while poly(l-lactide) meshes exhibited negligible release even after 28 days despite both polymers being slow-degrading. Differences in drug-polymer interactions and drug-polymer miscibility-but neither matrix degradation nor differences in bulk hydrophobicity-influenced DEX release from these semi-crystalline matrices. Poly(d,l-lactide-co-glycolide) 50:50 meshes possessing two different fiber diameters exhibited a sequential burst and sustained release, while poly(d,l-lactide-co-glycolide) 85:15 meshes cumulatively released 26% drug in a controlled manner. Although initial drug release from these matrices was driven by differences in matrix architecture and solid-state drug solubility, release toward the later stages was influenced by a combination of fiber swelling and matrix degradation as evidenced by gross and microstructural changes to the mesh network. We suggest that drug release from polymeric matrices can be better understood via investigation of critical matrix characteristics influencing release, as well as concomitant examination of drug-polymer interactions and miscibility. Our findings offer rational matrix design criteria to achieve controlled/extended drug release for promoting sustained biological responses.
Collapse
|
47
|
Liu X, He X, Jin D, Wu S, Wang H, Yin M, Aldalbahi A, El-Newehy M, Mo X, Wu J. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater 2020; 108:207-222. [PMID: 32251784 DOI: 10.1016/j.actbio.2020.03.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023]
Abstract
Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. STATEMENT OF SIGNIFICANCE: Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
Collapse
Affiliation(s)
- Xuezhe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Hongsheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China.
| |
Collapse
|
48
|
Kareem MM, Tanner KE. Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:38. [PMID: 32253587 DOI: 10.1007/s10856-020-06376-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/14/2020] [Indexed: 05/14/2023]
Abstract
HA-mineralised composite electrospun scaffolds have been introduced for bone regeneration due to their ability to mimic both morphological features and chemical composition of natural bone ECM. Micro-sized HA is generally avoided in electrospinning due to its reduced bioactivity compared to nano-sized HA due to the lower surface area. However, the high surface area of nanoparticles provides a very high surface energy, leading to agglomeration. Thus, the probability of nanoparticles clumping leading to premature mechanical failure is higher than for microparticles at higher filler content. In this study, two micron-sized hydroxyapatites were investigated for electrospinning with PLA at various contents, namely spray dried HA (HA1) and sintered HA (HA2) particles to examine the effect of polymer concentration, filler type and filler concentration on the morphology of the scaffolds, in addition to the mechanical properties and bioactivity. SEM results showed that fibre diameter and surface roughness of 15 and 20 wt% PLA fibres were significantly affected by incorporation of either HA. The apatite precipitation rates for HA1 and HA2-filled scaffolds immersed in simulated body fluid (SBF) were similar, however, it was affected by the fibre diameter and the presence of HA particles on the fibre surface. Degradation rates of HA2-filled scaffolds in vitro over 14 days was lower than for HA1-filled scaffolds due to enhanced dispersion of HA2 within PLA matrix and reduced cavities in PLA/HA2 interface. Finally, increasing filler surface area led to enhanced thermal stability as it reduced thermal degradation of the polymer.
Collapse
Affiliation(s)
- Muna M Kareem
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - K Elizabeth Tanner
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
49
|
Grafting of calcium chelating functionalities onto PLA monofilament fiber surfaces. Biointerphases 2020; 15:011006. [PMID: 32085677 DOI: 10.1116/1.5129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymer surface grafting is widely used in the field of bone regeneration to increase calcium phosphate (CaP) adhesion, with the intent of improving mechanical properties of CaP-polymer composite cements. Reinforcement can be achieved using multiple combined functional groups and/or complex surface geometries that, however, concurrently influence multiple effects such as wetting, roughness, and interfacial strengthening. This study focused on the influence of a chelating group, namely aspartic acid, on the adsorption of divalent ions such as Ba2+ or Ca2+ onto poly-l-lactic acid (PLA) films. The films were analyzed using contact angle measurements and X-ray photoelectron spectroscopy. The adsorption of CaP and its interfacial mechanical properties were investigated using functionalized PLA monofilaments whose surface roughness was analyzed using white light interferometry. Mechanical analysis was conducted by performing pull-out tests. The surfaces were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Using aspartic acid as a chelating group resulted in a 50 % increased adsorption of barium, an almost threefold increase in calcium coverage of the fiber compared to the control group and a twofold increase in interfacial stiffness. No significant increase in interfacial strength was determined, most likely due to the weakness of the CaP matrix, which was partially visible as residues on the monofilaments in the postfracture imaging. This study shows the potential of surfaces functionalized with aspartic acid as a simple alternative to complex polypeptide based functional groups for the adsorption of divalent ions such as calcium on poly-lactic acid in bone regenerating applications.
Collapse
|
50
|
Yang H, Cai Z, Liu H, Cao Z, Xia Y, Ma W, Gong F, Tao G, Liu C. Compatibilization of polypropylene/poly(glycolic acid) blend with maleated poe/attapulgite hybrid compatibilizer: Evaluation of mechanical, thermal, rheological, and morphological characteristics. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Zinan Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
| | - Haotian Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
- Key Laboratory of High Performance Fibers & Products, Ministry of EducationDonghua University Shanghai China
| | - Yanping Xia
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- School of Mechanical TechnologyWuxi Institute of Technology Wuxi Jiangsu China
| | - Guoliang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| |
Collapse
|