1
|
Xie X, Li J, Zhu H, Zhang B, Liang D, Cheng L, Hao M, Guo F. Effects of Polydextrose on Rheological and Fermentation Properties of Frozen Dough and Quality of Chinese Steamed Bread. STARCH-STARKE 2022. [DOI: 10.1002/star.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xinhua Xie
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Jiahui Li
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Hongshuai Zhu
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Bobo Zhang
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Dan Liang
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Lilin Cheng
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Mingyuan Hao
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Fangjie Guo
- Henan Tailijie Biotechnology Co Ltd 278 Xiangzi South Road Mengzhou 454750 China
| |
Collapse
|
2
|
Bhowmik P, Kant R, Nair R, Singh H. The synergistic influence of lemon extract on the physio-chemical properties of Kibisu silk reinforced wheat gluten biocomposite. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Low JT, Yusoff NISM, Othman N, Wong T, Wahit MU. Silk fibroin‐based films in food packaging applications: A review. Compr Rev Food Sci Food Saf 2022; 21:2253-2273. [DOI: 10.1111/1541-4337.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Tee Low
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | | | - Norhayani Othman
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
4
|
Ilyas RA, Zuhri MYM, Norrrahim MNF, Misenan MSM, Jenol MA, Samsudin SA, Nurazzi NM, Asyraf MRM, Supian ABM, Bangar SP, Nadlene R, Sharma S, Omran AAB. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:182. [PMID: 35012203 PMCID: PMC8747341 DOI: 10.3390/polym14010182] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.
Collapse
Affiliation(s)
- R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. Y. M. Zuhri
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia;
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Davutpasa Campus, Yildiz Technical University, Esenler, Istanbul 34220, Turkey;
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sani Amril Samsudin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - N. M. Nurazzi
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - M. R. M. Asyraf
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - A. B. M. Supian
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - R. Nadlene
- Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia;
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
| |
Collapse
|
5
|
Shirzaei Sani I, Rezaei M, Baradar Khoshfetrat A, Razzaghi D. Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2021; 182:1638-1649. [PMID: 34052267 DOI: 10.1016/j.ijbiomac.2021.05.163] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023]
Abstract
Chitosan (CS) and poly (ε-caprolactone) (PCL) are two most usable polymers in biomedical applications. In this study, chitosan has been modified and incorporated with poly (ε-caprolactone) to fabricate bone tissue engineering scaffold. Moreover, hydroxyapatite nanoparticles were added to enhance bioactivity and mechanical properties of scaffold. Bulk and fibrous comparative results showed significant effect of fiber diameter and distribution on mechanical properties. Moreover, the incorporation of chitosan-g-poly (ε-caprolactone) (CS-g-PCL) significantly decreases fiber diameter of pure PCL scaffold. Furthermore, both CS-g-PCL and nHA enhance mineralization and degradation of the scaffold soaked in simulated body fluid (SBF) and phosphate buffered saline (PBS), respectively. In vitro cytocompatibility assays also confirmed high cell viability and proliferation on the samples. Taken together, the results suggest that the microfabricated nanocomposite scaffolds could be used in bone tissue engineering.
Collapse
Affiliation(s)
- Iman Shirzaei Sani
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Mechanical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC, Canada
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Department of Chemical Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Donya Razzaghi
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
6
|
Gutiérrez TJ, Mendieta JR, Ortega-Toro R. In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106255] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Singh J, Kaur T, Singh N, Pandey PM. Biological and mechanical characterization of biodegradable carbonyl iron powder/polycaprolactone composite material fabricated using three-dimensional printing for cardiovascular stent application. Proc Inst Mech Eng H 2020; 234:975-987. [DOI: 10.1177/0954411920936055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological and mechanical properties of biodegradable polymeric composite materials are strongly influenced by the choice of appropriate reinforcement in the polymer matrix. Non-compatibility of material in the vascular system could obstruct the way of the biological fluids. The concept of development of polymeric composite material for vascular implants is to provide enough support to the vessel and to restore the vessel in the natural state after degradation. In this research, the polycaprolactone composite materials (carbonyl iron powder/polycaprolactone) were developed by reinforcement of the 0%–2% of carbonyl iron powder using the solvent cast three-dimensional printing technique. The physicochemical properties of developed composites were characterized in conjunction with mechanical and biological properties. The mechanical characterizations were assessed by uniaxial tensile testing as well as flexibility testing. The results of mechanical testing assured that carbonyl iron powder/polycaprolactone composites have shown desirable properties for vascular implants. Besides the mechanical characterization, in vitro biological investigations of carbonyl iron powder/polycaprolactone were done for analyzing blood compatibility and cytocompatibility. The results revealed that the materials developed were biocompatible, less hemolytic, and having non-thrombogenic properties indicating the promising applications in the field of cardiovascular applications.
Collapse
Affiliation(s)
- Jasvinder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
8
|
Brennan CM, Eichholz KF, Hoey DA. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. ACTA ACUST UNITED AC 2019; 14:065016. [PMID: 31574493 DOI: 10.1088/1748-605x/ab49f2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Limitations associated with current bone grafting materials has necessitated the development of synthetic scaffolds that mimic the native tissue for bone repair. Scaffold parameters such as pore size, pore interconnectivity, fibre diameter, and fibre stiffness are crucial parameters of fibrous bone tissue engineering (BTE) scaffolds required to replicate the native environment. Optimum values vary with material, fabrication method and cell type. Melt electrowriting (MEW) provides precise control over extracellular matrix (ECM)-like fibrous scaffold architecture. The goal of this study was to fabricate and characterise poly-ε-caprolactone (PCL) fibrous scaffolds with 100, 200, and 300 μm pore sizes using MEW and determine the influence of pore size on human bone marrow stem cell (hMSC) adhesion, morphology, proliferation, mechanosignalling and osteogenesis. Each scaffold was fabricated with a fibre diameter of 4.01 ± 0.06 μm. The findings from this study highlight the enhanced osteogenic effects of controlled micro-scale fibre deposition using MEW, where the benefits of 100 μm square pores in comparison with larger pore sizes are illustrated, a pore size traditionally reported as a lower limit for osteogenesis. This suggests a lower pore size is optimal when hMSCs are seeded in a 3D ECM-like fibrous structure, with the 100 μm pore size optimal as it demonstrates the highest global stiffness, local fibre stiffness, highest seeding efficiency, maintains a spread cellular morphology, and significantly enhances hMSC collagen and mineral deposition. Similarly, this platform represents an effective in vitro model for the study of hMSC behaviour to determine the significant osteogenic benefits of controlling ECM-like fibrous BTE scaffold pore size using MEW.
Collapse
Affiliation(s)
- C M Brennan
- Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland. Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
9
|
Barczewski M, Mysiukiewicz O, Kloziński A. Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0644-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Effects of Bamboo Shoot Dietary Fiber on Mechanical Properties, Moisture Distribution, and Microstructure of Frozen Dough. J CHEM-NY 2017. [DOI: 10.1155/2017/4513410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, the effects of Bamboo shoot dietary fiber (BSDF) on the mechanical properties, moisture distribution, and microstructure of frozen dough were investigated. The state and distribution of water in frozen dough was determined by differential scanning calorimetry (DSC) and low-field nuclear magnetic resonance (LNMR) spectroscopy. The microstructure of frozen dough was studied. The structure of the gluten protein network found in wheat flour dough was studied by scanning electron microscopy (SEM). The result showed that the BSDF could significantly improve the viscoelasticity and extensibility of frozen dough after thawing in a dose-dependent manner. It was significantly improved with the increase in the addition amount of BSDF (P<0.05). DSC analysis showed that the freezable water content and thermal stability of frozen dough were increased after the addition of BSDF. LNMR analysis showed that the appropriate (<0.1%) addition amount of BSDF could significantly (P<0.05) decline the contents of bound water. Meanwhile, the loose bound water and free water were raised significantly (P<0.05) after the addition of BSDF. Moreover, the addition of BSDF induces arrangement of starch granule and gluten network in frozen dough. BSDF can be used as a novel quality improver of frozen dough.
Collapse
|
11
|
Zhong N, Yuan Q. Preparation and properties of molded blends of wheat gluten and cationic water-borne polyurethanes. J Appl Polym Sci 2012. [DOI: 10.1002/app.38198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Corradini E, Marconcini JM, Agnelli JA, Mattoso LH. Thermoplastic blends of corn gluten meal/starch (CGM/Starch) and corn gluten meal/polyvinyl alcohol and corn gluten meal/poly (hydroxybutyrate-co-hydroxyvalerate) (CGM/PHB-V). Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Hong SI, Choi WY, Cho SY, Jung SH, Shin BY, Park HJ. Mechanical properties and biodegradability of poly-ɛ-caprolactone/soy protein isolate blends compatibilized by coconut oil. Polym Degrad Stab 2009. [DOI: 10.1016/j.polymdegradstab.2009.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|