1
|
Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, Fal S, El Arroussi H, Peng W, Tabatabaei M, Aghbashlo M, Almomani F, Lam SS, Sillanpää M. Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. CHEMOSPHERE 2022; 291:133036. [PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China; Centre for Chemical Biology, Universiti Sains Malaysia, Minden, Malaysia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco.
| | - Jawhar Hafsa
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco
| | - Reda Ben Mrid
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben-Guerir, Morocco
| | - Soufiane Fal
- Green Biotechnology laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR). Madinat Al Irfane, Rabat 10100 Morocco; Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University of Rabat, 10000, Morocco
| | - Hicham El Arroussi
- Green Biotechnology laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR). Madinat Al Irfane, Rabat 10100 Morocco
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Malaysia Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
2
|
Yang J, Ching YC, Chuah CH, Liou NS. Preparation and Characterization of Starch/Empty Fruit Bunch-Based Bioplastic Composites Reinforced with Epoxidized Oils. Polymers (Basel) 2020; 13:E94. [PMID: 33383626 PMCID: PMC7794836 DOI: 10.3390/polym13010094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites' water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.
Collapse
Affiliation(s)
- Jianlei Yang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nai-Shang Liou
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Nan-Tai Street, Yongkang Dist., Tainan City 710, Taiwan;
| |
Collapse
|
4
|
Lei B, Liang Y, Feng Y, He H, Yang Z. Preparation and Characteristics of Biocomposites Based on Steam Exploded Sisal Fiber Modified with Amphipathic Epoxidized Soybean Oil Resin. MATERIALS 2018; 11:ma11091731. [PMID: 30223491 PMCID: PMC6163795 DOI: 10.3390/ma11091731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 11/22/2022]
Abstract
Sisal fiber was pretreated by continuous screw extrusion steam explosion to prepare steam exploded sisal fiber (SESF) preforms. An amphipathic bio-based thermosetting resin with poor mechanical properties was cured by epoxidized soybean oil (ESO) and citric acid (CA). The obtained resin was used to modify SESF preforms and prepare eco-friendly biocomposites. The molar ratios (R) of carboxylic groups to epoxy groups and resin contents in biocomposites were adjusted. The biocomposites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transfer infrared spectroscopy (FT-IR), tensile testing, scanning electron microscopy (SEM), water absorption and water contact angle measurements. The maximum thermal decomposition temperature of the biocomposites was 373.1 °C. The curing efficiency of the resin in the biocomposites improved with the increase of resin content, and reached a maximum at R = 1.2. The tensile strength of the biocomposites reached a maximum of 30.4 MPa at R = 1.2 and 40% resin content. SEM images showed excellent interfacial bonding and fracture mechanisms within the biocomposites. The biocomposites exhibited satisfactory water resistance. ESO resin cured with polybasic carboxylic acid is therefore a good bio-based modifier for lignocellulose, that prepare biocomposites with good mechanical properties, hydrophobicity, and thermostability, and which has a potential application in packaging.
Collapse
Affiliation(s)
- Bo Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Yong Liang
- School of Mechanical and Vehicle Engineering, Changzhou Institute of Technology, Changzhou 213032, China.
| | - Yanhong Feng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Hezhi He
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Zhitao Yang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, China.
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Perez-Puyana V, Felix M, Romero A, Guerrero A. Effect of the injection moulding processing conditions on the development of pea protein-based bioplastics. J Appl Polym Sci 2016. [DOI: 10.1002/app.43306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- V. Perez-Puyana
- Departamento De Ingeniería Química, Universidad De Sevilla, Facultad De Química; Sevilla 41012 Spain
| | - M. Felix
- Departamento De Ingeniería Química, Universidad De Sevilla, Facultad De Química; Sevilla 41012 Spain
| | - A. Romero
- Departamento De Ingeniería Química, Universidad De Sevilla, Facultad De Química; Sevilla 41012 Spain
| | - A. Guerrero
- Departamento De Ingeniería Química, Universidad De Sevilla, Facultad De Química; Sevilla 41012 Spain
| |
Collapse
|
9
|
Rana A, Evitts RW. Synthesis and Characterization of Acrylated Epoxidized Flaxseed Oil for Biopolymeric Applications. INT POLYM PROC 2015. [DOI: 10.3139/217.2961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
In this study acrylated epoxidized flaxseed oil was synthesized and then characterized by spectroscopic techniques. Triglycerides are the main constituents of flaxseed oil and the carbon-carbon double bond is the reaction site for epoxidation. Flaxseed oil was epoxidized by adding formic acid and hydrogen peroxide. Acrylic acid was then added to produce acrylated epoxidized flaxseed oil (AEFO). The change in the structure of the fatty acids chain after the epoxidation and acrylation reactions was measured and characterized by Hydrogen nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The FTIR spectra of epoxidized flaxseed oil and flaxseed oil shows the disappearance of the =C–H (3012 cm−1) and C=C (1654 cm−1) peaks. The FTIR spectra confirmed the formation of AEFO since the presence of hydroxyl group (–OH) was shown by the peak at 3455 cm−1 and the acrylate group (–CH=CH2), which was indicated by the peaks at 1406, 984 and 812 cm−1. The changes in peaks of the 1H NMR spectra also confirmed the formation of AEFO. The number of acrylate groups/molecule of triglyceride was found to be 2.6 from 1H NMR spectra.
Collapse
Affiliation(s)
- A. Rana
- Department of Chemical and Biological Engineering , University of Saskatchewan, Saskatoon, Saskatchewan , Canada
| | - R. W. Evitts
- Department of Chemical and Biological Engineering , University of Saskatchewan, Saskatoon, Saskatchewan , Canada
| |
Collapse
|
11
|
Texter J, Qiu Z, Crombez R, Shen W. Nanofluid polyurethane/polyurea resins-thin films and clearcoats. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John Texter
- School of Engineering Technology, Eastern Michigan University; Ypsilanti Michigan 48197
- Coatings Research Institute, Eastern Michigan University; Ypsilanti Michigan 48197
| | - Zhiming Qiu
- School of Engineering Technology, Eastern Michigan University; Ypsilanti Michigan 48197
- Coatings Research Institute, Eastern Michigan University; Ypsilanti Michigan 48197
| | - Rene Crombez
- School of Engineering Technology, Eastern Michigan University; Ypsilanti Michigan 48197
- Coatings Research Institute, Eastern Michigan University; Ypsilanti Michigan 48197
| | - Weidian Shen
- Coatings Research Institute, Eastern Michigan University; Ypsilanti Michigan 48197
- Department of Physics; Eastern Michigan University; Ypsilanti Michigan 48197
| |
Collapse
|
15
|
Pan X, Sengupta P, Webster DC. High Biobased Content Epoxy–Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids. Biomacromolecules 2011; 12:2416-28. [DOI: 10.1021/bm200549c] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Pan
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, United States
| | - Partha Sengupta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, United States
| | - Dean C. Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|