1
|
Mahmud MA, Abir N, Anannya FR, Nabi Khan A, Rahman AM, Jamine N. Coir fiber as thermal insulator and its performance as reinforcing material in biocomposite production. Heliyon 2023; 9:e15597. [PMID: 37153406 PMCID: PMC10160762 DOI: 10.1016/j.heliyon.2023.e15597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Coir is a lignocellulosic natural fiber derived from the coconut's husk, an abundantly found fruit or nut worldwide. This fiber has some unique characteristics, such as its resistance to seawater, microbial attack, high impact, etc. But its low thermal conductivity or high thermal insulating property makes it suitable for being used as insulators in civil engineering sites. On the other hand, the sustainability of a material depends heavily on its environmental impact of the material. For making sustainable materials like biocomposite, there are no options other than using polymers derived from natural renewable sources. Polylactic acid(PLA) is an example of those types of material. And these materials are often being reinforced by fibers like coir for various reasons including improving mechanical properties, reducing the cost of the material, and improving the material's sustainability. Many coir-reinforced sustainable biopolymer composites have already been produced in many pieces of research, which will be discussed in this paper, along with the chemical and physical structure of coir fiber. In addition, this paper will try to focus on the insulating properties of coir and coir-reinforced composites while will also compare some properties of the composites with some commonly used materials based on different parameters to show the suitability of using the coir fiber in heat-insulating applications and to produce sustainable biocomposite materials.
Collapse
Affiliation(s)
- Md. Arif Mahmud
- Department of Textile Engineering, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
- Corresponding author.
| | - Nafis Abir
- Department of Textile Engineering, BGMEA University of Fashion and Technology, Dhaka, 1230, Bangladesh
| | - Ferdausee Rahman Anannya
- Department of Textile Engineering and Management, BGMEA University of Fashion and Technology, Dhaka, 1230, Bangladesh
| | - Ayub Nabi Khan
- BGMEA University of Fashion and Technology, Dhaka, 1230, Bangladesh
| | - A.N.M. Masudur Rahman
- Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Nasrin Jamine
- Department of Apparel Merchandising & Management, BGMEA University of Fashion and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
2
|
Nukala SG, Kong I, Patel VI, Kakarla AB, Kong W, Buddrick O. Development of Biodegradable Composites Using Polycaprolactone and Bamboo Powder. Polymers (Basel) 2022; 14:4169. [PMID: 36236115 PMCID: PMC9573369 DOI: 10.3390/polym14194169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
The use of biodegradable polymers in daily life is increasing to reduce environmental hazards. In line with this, the present study aimed to develop a fully biodegradable polymer composite that was environmentally friendly and exhibited promising mechanical and thermal properties. Bamboo powder (BP)-reinforced polycaprolactone (PCL) composites were prepared using the solvent casting method. The influence of BP content on the morphology, wettability, and mechanical and thermal properties of the neat matrix was evaluated. In addition, the degradation properties of the composites were analysed through soil burial and acidic degradation tests. It was revealed that BP contents had an evident influence on the properties of the composites. The increase in the BP content has significantly improved the tensile strength of the PCL matrix. A similar trend is observed for thermal stability. Scanning electron micrographs demonstrated uniform dispersion of the BP in the PCL matrix. The degradation tests revealed that the biocomposites with 40 wt·% of BP degraded by more than 20% within 4 weeks in the acidic degradation test and more than 5% in the soil burial degradation test. It was noticed that there was a considerable difference in the degradation between the PCL matrix and the biocomposites of PCL and BP. These results suggest that biodegradable composites could be a promising alternative material to the existing synthetic polymer composites.
Collapse
Affiliation(s)
- Satya Guha Nukala
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Vipulkumar Ishvarbhai Patel
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Akesh Babu Kakarla
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Wei Kong
- Centre for Foundation and General Studies, Infrastructure University Kuala Lumpur, Block 11, De Centrum City, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia
| | - Oliver Buddrick
- Faculty of Higher Education, William Angliss Institute, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
High poly ε-caprolactone biodegradation activity by a new Acinetobacter seifertii isolate. Folia Microbiol (Praha) 2022; 67:659-669. [PMID: 35384558 DOI: 10.1007/s12223-022-00964-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
Poly(ε-caprolactone; PCL) is an attractive biodegradable polymer that has been increasingly used to solve environmental problems caused by plastic wastes. In the present study, 468 bacterial isolates were recovered from soil samples and screened for PCL degradation activity. Of the isolates, 37 (7.9%) showed PCL depolymerase activity on PCL agar medium, with the highest activity being by isolate S22 which was identified using 16S rRNA and rpoB gene sequencing as Acinetobacter seifertii. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the degradation of PCL films after treatment with A. seifertii S22. The PCL depolymerase activity of A. seifertii S22 relied on the activity of esterase which occurred at an optimum temperature of 30-40 °C. The highest PCL depolymerase activity (35.5 ± 0.7 U/mL) was achieved after culturing A. seifertii S22 for 6 h in mineral salt medium (MSM) containing 0.1% Tween 20 and 0.02% ammonium sulfate as the carbon and nitrogen sources, respectively, which was approximately 20-fold higher than for cultivation in MSM supplemented with 0.1% PCL as sole carbon source. The results suggested that A. seifertii S22 or its enzymes could be used for PCL bioplastic degradation.
Collapse
|
4
|
Ilyas RA, Zuhri MYM, Norrrahim MNF, Misenan MSM, Jenol MA, Samsudin SA, Nurazzi NM, Asyraf MRM, Supian ABM, Bangar SP, Nadlene R, Sharma S, Omran AAB. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:182. [PMID: 35012203 PMCID: PMC8747341 DOI: 10.3390/polym14010182] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.
Collapse
Affiliation(s)
- R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. Y. M. Zuhri
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia;
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Davutpasa Campus, Yildiz Technical University, Esenler, Istanbul 34220, Turkey;
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sani Amril Samsudin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - N. M. Nurazzi
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - M. R. M. Asyraf
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - A. B. M. Supian
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - R. Nadlene
- Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia;
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
| |
Collapse
|
5
|
Wang Z, Song X, Cui Y, Cheng K, Tian X, Dong M, Liu L. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release. J Colloid Interface Sci 2021; 593:142-151. [PMID: 33744525 DOI: 10.1016/j.jcis.2021.02.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/24/2023]
Abstract
The scaffold materials with good mechanical and structural properties, controlled drug release performance, biocompatibility and biodegradability are important tenet in tissue engineering. In this work, the functional core-shell nanofibers with poly(ε-caprolactone) (PCL) as shell and silk fibroin heavy chain (H-fibroin) as core were constructed by emulsion electrospinning. The transmission electron microscopy confirmed that the nanofiber with core-shell structure were successfully prepared. The constructed nanofiber materials were characterized by the several characterization methods. The results showed that ethanol treatment could induce the formation of β-sheet of H-fibroin in composite nanofibers, thus improving the mechanical properties of PCL/H-fibroin nanofiber scaffold. In addition, we evaluated the potential of PCL/H-fibroin nanofiber membrane as a biological scaffold. It was found that PCL/H-fibroin nanofiber scaffold was more conducive to cell adhesion and proliferation with the increment of H-fibroin. Finally, in vitro drug release presented that PCL/H-fibroin core-shell nanofibers could effectively reduce the prophase burst of drug molecules and show the sustained drug release. The PCL/H-fibroin nanofiber scaffolds constructed in this work have good mechanical properties, biocompatibility, and display good potential in biomedical applications, such as drug carriers, tissue engineering and wound dressings, etc.
Collapse
Affiliation(s)
- Zengkai Wang
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolu Song
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Cui
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Kai Cheng
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lei Liu
- School of Materials Science and Engineering and Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Sousa JC, Costa ARM, Lima JC, Arruda SA, Almeida YMB. Crystallization kinetics modeling, thermal properties and biodegradability of poly (ε-caprolactone)/niobium pentoxide and alumina compounds. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sousa FM, Costa ARM, Reul LTA, Cavalcanti FB, Carvalho LH, Almeida TG, Canedo EL. Rheological and thermal characterization of PCL/PBAT blends. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2428-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). Int J Biol Macromol 2015; 76:49-57. [DOI: 10.1016/j.ijbiomac.2015.01.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/21/2022]
|
9
|
Sarasini F, Tirillò J, Puglia D, Kenny JM, Dominici F, Santulli C, Tofani M, De Santis R. Effect of different lignocellulosic fibres on poly(ε-caprolactone)-based composites for potential applications in orthotics. RSC Adv 2015. [DOI: 10.1039/c5ra00832h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A comparative assessment of three lignocellulosic fibres obtained from leaf, bast and fruit on the mechanical and thermal properties of fully biodegradable composites has been performed.
Collapse
Affiliation(s)
- Fabrizio Sarasini
- Sapienza-Università di Roma
- Department of Chemical Engineering Materials Environment
- UdR INSTM
- 00184 Roma
- Italy
| | - Jacopo Tirillò
- Sapienza-Università di Roma
- Department of Chemical Engineering Materials Environment
- UdR INSTM
- 00184 Roma
- Italy
| | - Debora Puglia
- Università di Perugia
- Department of Civil and Environmental Engineering
- UdR INSTM
- 05100 Terni
- Italy
| | - José M. Kenny
- Università di Perugia
- Department of Civil and Environmental Engineering
- UdR INSTM
- 05100 Terni
- Italy
| | - Franco Dominici
- Università di Perugia
- Department of Civil and Environmental Engineering
- UdR INSTM
- 05100 Terni
- Italy
| | - Carlo Santulli
- Università degli Studi di Camerino
- School of Architecture and Design (SAD)
- 63100 Ascoli Piceno
- Italy
| | - Marco Tofani
- Sapienza-Università di Roma
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences
- 00185 Roma
- Italy
| | - Rita De Santis
- Sapienza-Università di Roma
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences
- 00185 Roma
- Italy
| |
Collapse
|
10
|
Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V. Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.06.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Preparation, characterization, and biodegradability of renewable resource-based composites from recycled polylactide bioplastic and sisal fibers. J Appl Polym Sci 2011. [DOI: 10.1002/app.34223] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Performance and biodegradability of a maleated polyester bioplastic/recycled sugarcane bagasse system. J Appl Polym Sci 2011. [DOI: 10.1002/app.33713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Chen D, Li J, Ren J. Combustion properties and transference behavior of ultrafine microencapsulated ammonium polyphosphate in ramie fabric-reinforced poly(L
-lactic acid) biocomposites. POLYM INT 2010. [DOI: 10.1002/pi.2986] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|