1
|
Seesala VS, Sheikh L, Basu B, Mukherjee S. Mechanical and Bioactive Properties of PMMA Bone Cement: A Review. ACS Biomater Sci Eng 2024; 10:5939-5959. [PMID: 39240690 DOI: 10.1021/acsbiomaterials.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Over the past few decades, poly(methyl methacrylate) (PMMA) based bone cement has been clinically used extensively in orthopedics for arthroplasty and kyphoplasty, due to its biocompatibility and excellent primary fixation to the host bone. In this focused review, we discuss the use of various fillers and secondary chemical moieties to improve the bioactivity and the physicochemical properties. The viscosity of the PMMA blend formulations and working time are crucial to achieving intimate contact with the osseous tissue, which is highly sensitive to organic or inorganic fillers. Hydroxyapatite as a reinforcement resulted in compromised mechanical properties of the modified cement. The possible mechanisms of the additive- or filler-dependent strengthening or weakening of the PMMA blend are critically reviewed. The addition of layered double hydroxides with surface functionalization appears to be a promising approach to enhance the bonding of filler with the PMMA matrix. Such an approach consequently improves the mechanical properties, owing to enhanced dispersion as well as contributions from crack bridging. Finally, the use of emerging alternatives, such as nanoparticles, and the use of natural biomolecules were highlighted to improve bioactivity and antibacterial properties.
Collapse
Affiliation(s)
- Venkata Sundeep Seesala
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Lubna Sheikh
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Subrata Mukherjee
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| |
Collapse
|
2
|
Maciejewska M, Rogulska M. Porous Copolymers of 3-(Trimethoxysilyl)propyl Methacrylate with Trimethylpropane Trimethacrylate Preparation: Structural Characterization and Thermal Degradation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4796. [PMID: 39410367 PMCID: PMC11477589 DOI: 10.3390/ma17194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Porous polymeric microspheres are among the most effective adsorbents. They can be synthesized from numerous monomers using different kinds of polymerization techniques with a broad selection of synthesis factors. The main goal of this study was to prepare copolymeric microspheres and establish the relationship between copolymerization parameters and the porosity and thermal stability of the newly synthesized materials. Porous microspheres were obtained via heterogenous radical copolymerization using 3-(trimethoxysilyl)propyl methacrylate (TMPSM) as functional monomers and trimethylolpropane trimethacrylate (TRIM) as the crosslinker. In the course of the copolymerization, toluene or chlorobenzene was used as the pore-forming diluent. Consequently, highly porous microspheres were produced. Their specific surface area was established by a nitrogen adsorption/desorption method and it was in the range of 382 m2/g to 457 m2/g for toluene and 357-500 m2/g in the case of chlorobenzene. The thermal degradation process was monitored by thermogravimetry and differential scanning calorimetry methods in inert and oxidative conditions. The copolymers were stable up to 269-283 °C in a helium atmosphere, whereas in synthetic air the range was 266-298 °C, as determined by the temperature of 5% mass loss. Thermal stability of the investigated copolymers increased along with an increasing TMPSM amount in the copolymerization mixture. In addition, the poly(TMSPM-co-TRIM) copolymers were effectively used as the stationary phase in GC analyses.
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland;
| | | |
Collapse
|
3
|
Shiroud Heidari B, Lopez EM, Chen P, Ruan R, Vahabli E, Davachi SM, Granero-Moltó F, De-Juan-Pardo EM, Zheng M, Doyle B. Silane-modified hydroxyapatite nanoparticles incorporated into polydioxanone/poly(lactide- co-caprolactone) creates a novel toughened nanocomposite with improved material properties and in vivo inflammatory responses. Mater Today Bio 2023; 22:100778. [PMID: 37664796 PMCID: PMC10474235 DOI: 10.1016/j.mtbio.2023.100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
The interface tissue between bone and soft tissues, such as tendon and ligament (TL), is highly prone to injury. Although different biomaterials have been developed for TL regeneration, few address the challenges of the TL-bone interface. Here, we aim to develop novel hybrid nanocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL), and hydroxyapatite (HA) nanoparticles suitable for TL-bone interface repair. Nanocomposites, containing 3-10% of both unmodified and chemically modified hydroxyapatite (mHA) with a silane coupling agent. We then explored biocompatibility through in vitro and in vivo studies using a subcutaneous mouse model. Through different characterisation tests, we found that mHA increases tensile properties, creates rougher surfaces, and reduces crystallinity and hydrophilicity. Morphological observations indicate that mHA nanoparticles are attracted by PDO rather than LCL phase, resulting in a higher degradation rate for mHA group. We found that adding the 5% of nanoparticles gives a balance between the properties. In vitro experiments show that osteoblasts' activities are more affected by increasing the nanoparticle content compared with fibroblasts. Animal studies indicate that both HA and mHA nanoparticles (10%) can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. In summary, this work highlights the potential of PDO/LCL/HA nanocomposites as an excellent biomaterial for TL-bone interface tissue engineering applications.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Emma Muinos Lopez
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Peilin Chen
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- School of Medicine, Monash University, VIC, Melbourne, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Ebrahim Vahabli
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, USA
| | - Froilán Granero-Moltó
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Elena M. De-Juan-Pardo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Barry Doyle
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Ahmed I, Ali M, Elsherif M, Butt H. UV polymerization fabrication method for polymer composite based optical fiber sensors. Sci Rep 2023; 13:10823. [PMID: 37402807 DOI: 10.1038/s41598-023-33991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 07/06/2023] Open
Abstract
Optical fiber (OF) sensors are critical optical devices with excellent sensing capabilities and the capacity to operate in remote and hostile environments. However, integrating functional materials and micro/nanostructures into the optical fiber systems for specific sensing applications has limitations of compatibility, readiness, poor control, robustness, and cost-effectiveness. Herein, we have demonstrated the fabrication and integration of stimuli-responsive optical fiber probe sensors using a novel, low-cost, and facile 3D printing process. Thermal stimulus-response of thermochromic pigment micro-powders was integrated with optical fibers by incorporating them into ultraviolet-sensitive transparent polymer resins and then printed via a single droplet 3D printing process. Hence, the thermally active polymer composite fibers were grown (additively manufactured) on top of the commercial optical fiber tips. Then, the thermal response was studied within the temperature range of (25-35 °C) and (25-31 °C) for unicolor and dual color pigment powders-based fiber-tip sensors, respectively. The unicolor (with color to colorless transition) and dual color (with color to color transition) powders-based sensors exhibited substantial variations in transmission and reflection spectra by reversibly increasing and decreasing temperatures. The sensitivities were calculated from the transmission spectra where average change in transmission spectra was recorded as 3.5% with every 1 °C for blue, 3% for red and 1% for orange-yellow thermochromic powders based optical fiber tip sensors. Our fabricated sensors are cost-effective, reusable, and flexible in terms of materials and process parameters. Thus, the fabrication process can potentially develop transparent and tunable thermochromic sensors for remote sensing with a much simpler manufacturing process compared to conventional and other 3D printing processes for optical fiber sensors. Moreover, this process can integrate micro/nanostructures as patterns on the optical fiber tips to increase sensitivity. The developed sensors may be employed as remote temperature sensors in biomedical and healthcare applications.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| | - Murad Ali
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| | | | - Haider Butt
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| |
Collapse
|
5
|
Mondal D, Willett TL. Enhanced mechanical performance of mSLA-printed biopolymer nanocomposites due to phase functionalization. J Mech Behav Biomed Mater 2022; 135:105450. [PMID: 36115176 DOI: 10.1016/j.jmbbm.2022.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Functionalized phases can effectively increase the mechanical properties of nanocomposites through interfacial bonding. This work demonstrates masked stereolithography (mSLA) of biopolymer-based nanocomposites and the improvement of their mechanical properties by the functionalization of both polymer matrix and nanoparticles with methacrylate groups. 3D printable nanocomposite inks were prepared from plant-derived acrylated epoxidized soybean oil (AESO), polyethylene glycol diacrylate (PEGDA), and nano-hydroxyapatite (nHA). Both AESO and nHA were further functionalized with additional methacrylate groups. We hypothesized that the additional functionalization of AESO and surface functionalization of nHA would improve the tensile strength and fracture toughness of these nanocomposites by increasing the degree of crosslinking and the strength of the interface between the matrix and nanoparticles. Curing efficiency, rheology, and print-fidelity of the nanocomposites were evaluated. Mechanical test specimens were prepared by mSLA-based 3D printing. Tensile mechanical properties, Poisson's ratio, and Mode-I fracture toughness were measured by following ASTM standards. Fracture surfaces of the tested specimens were studied using scanning electron microscopy. Thermomechanical behavior, especially glass transition temperature (Tg), was studied using dynamic mechanical analysis (DMA). Functionalized AESO (mAESO) improved rheological, tensile, and fracture mechanical properties. For instance, by replacing AESO with mAESO, tensile strength, Young's modulus, fracture toughness (K1c), and Tg increased by 33%, 53%, 40%, and 38% respectively. In addition, the combination of both functionalized nHA and mAESO improved the fracture toughness of the 10% volume fraction nHA nanocomposites but made them less extensible presumably due to reduced chain mobility due to greater crosslinking.
Collapse
Affiliation(s)
- Dibakar Mondal
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 3G1, Canada
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 3G1, Canada.
| |
Collapse
|
6
|
Kong J, Park SS, Ha CS. pH-Sensitive Polyacrylic Acid-Gated Mesoporous Silica Nanocarrier Incorporated with Calcium Ions for Controlled Drug Release. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5926. [PMID: 36079309 PMCID: PMC9457024 DOI: 10.3390/ma15175926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, polyacrylic acid-functionalized MCM-41 was synthesized, which was made to interact with calcium ions, in order to realize enhanced pH-responsive nanocarriers for sustained drug release. First, mesoporous silica nanoparticles (MSNs) were prepared by the sol-gel method. Afterward, a (3-trimethoxysilyl)propyl methacrylate (TMSPM) modified surface was prepared by using the post-grafting method, and then the polymerization of the acrylic acid was performed. After adding a calcium chloride solution, polyacrylic acid-functionalized MSNs with calcium-carboxyl ionic bonds in the polymeric layer, which can prevent the cargo from leaking out of the mesopore, were prepared. The structure and morphology of the modified nanoparticles (PAA-MSNs) were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, etc. The controlled release of guest molecules was studied by using 5-fluorouracil (5-FU). The drug molecule-incorporated nanoparticles showed different releasing rates under different pH conditions. It is considered that our current materials have the potential as pH-responsive nanocarriers in the field of medical treatment.
Collapse
Affiliation(s)
- Jungwon Kong
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Korea
| | - Sung Soo Park
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Zhao M, Yang D, Fan S, Yao X, Wang J, Zhu M, Zhang Y. 3D-Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104001. [PMID: 34936228 PMCID: PMC8844577 DOI: 10.1002/advs.202104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Indexed: 05/02/2023]
Abstract
Mimicking the multi-scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom-up step-by-step strategy is developed using extrusion-based 3D printing technology to achieve a high-precision dental crown with multi-scale highly ordered HAp structure. In this study, hybrid resin-based composites (RBCs) with "supergravity +" HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom-built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss-crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp-monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.
Collapse
Affiliation(s)
- Menglu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Danlei Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jiexin Wang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
8
|
Tham DQ, Huynh MD, Linh NTD, Van DTC, Cong DV, Dung NTK, Trang NTT, Lam PV, Hoang T, Lam TD. PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization. Polymers (Basel) 2021; 13:polym13223860. [PMID: 34833161 PMCID: PMC8617905 DOI: 10.3390/polym13223860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, vinyltrimethoxysilane-treated hydroxyapatite (vHAP) and PMMA-grafted HAP (gHAP) were successfully prepared from original HAP (oHAP). Three kinds of HAP (oHAP, vHAP and g HAP) were used as additives for the preparation of three groups of HAP-modified PMMA bone cements (oHAP-BC, vHAP-BC and gHAP-BC). The setting, bending and compression properties of the bone cements were conducted according to ISO 5833:2002. The obtained results showed that the maximum temperature while curing the HAP-modified bone cements (HAP-BCs) decreased from 64.9 to 60.8 °C and the setting time increased from 8.1 to 14.0 min, respectively, with increasing HAP loading from 0 to 15 wt.%. The vHAP-BC and gHAP-BC groups exhibited higher mechanical properties than the required values in ISO 5833. Electron microscopy images showed that the vHAP and gHAP nanoparticles were dispersed better in the polymerized PMMA matrix than the oHAP nanoparticles. FTIR analysis indicated the polar interaction between the PO4 groups of the HAP nanoparticles and the ester groups of the polymerized PMMA matrix. Thermal gravimetric analysis indicated that mixtures of ZrO2/HAPs were not able to significantly improve the thermal stability of the HAP-BCs. DSC diagrams showed that the incorporation of gHAP to PMMA bone cement with loadings lower than 10 wt.% can increase Tg by about 2.4 °C.
Collapse
Affiliation(s)
- Do Quang Tham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
- Correspondence:
| | - Mai Duc Huynh
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Nguyen Thi Dieu Linh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
| | - Do Thi Cam Van
- Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Hanoi 10000, Vietnam;
| | - Do Van Cong
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Nguyen Thi Kim Dung
- National Academy of Education Management, 31 Phan Dinh Giot, Thanh Xuan, Hanoi 10000, Vietnam;
| | - Nguyen Thi Thu Trang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Pham Van Lam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
| | - Thai Hoang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| |
Collapse
|
9
|
Zidan S, Silikas N, Al-Nasrawi S, Haider J, Alshabib A, Alshame A, Yates J. Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocomposites. MATERIALS 2021; 14:ma14123212. [PMID: 34200948 PMCID: PMC8230683 DOI: 10.3390/ma14123212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
Objectives: The objective of this study was to investigate the mechanical properties of high-impact (HI) heat-cured acrylic resin (PMMA) reinforced with silane-treated zirconia nanoparticles. Methods: Forty-five PMMA specimens reinforced with zirconia were fabricated and divided into three groups: Pure HI PMMA (control group), PMMA reinforced with 3 wt.% of non-silanised zirconia nanoparticles and PMMA reinforced with 3 wt.% of silanised zirconia nanoparticles. Silanised and non-silanised zirconia nanoparticles were analysed with Fourier Transform Infrared (FTIR) Spectroscopy. For measuring the flexural modulus and strength, a Zwick universal tester was used, and for surface hardness, a Vickers hardness tester were used. Furthermore, raw materials and fractured surfaces were analysed using Scanning Electron Microscopy (SEM). A one-way ANOVA test followed by a post-hoc Bonferroni test was employed to analyse the data. Results: The results showed that the mean values for flexural strength (83.5 ± 6.2 MPa) and surface hardness (20.1 ± 2.3 kg/mm2) of the group containing 3 wt.% treated zirconia increased significantly (p < 0.05) in comparison to the specimens in the group containing non-treated zirconia (59.9 ± 7.1 MPa; 15.0 ± 0.2 kg/mm2) and the control group (72.4 ± 8.6 MPa; 17.1 ± 0.9 kg/mm2). However, the group with silanised zirconia showed an increase in flexural modulus (2313 ± 161 MPa) but was not significantly different (p > 0.05) from the non-silanised group (2207 ± 252 MPa) and the control group (1971 ± 235 MPa). Conclusion: Silane-treated zirconia nano-filler improves the surface hardness and flexural strength of HI PMMA-zirconia nanocomposites, giving a potentially longer service life of the denture base.
Collapse
Affiliation(s)
- Saleh Zidan
- Department of Dental Materials, Faculty of Dentistry, Sebha University, Sebha 18758, Libya
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (N.S.); (J.H.); (J.Y.)
- Correspondence:
| | - Nikolaos Silikas
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (N.S.); (J.H.); (J.Y.)
| | - Suhad Al-Nasrawi
- Department of Restorative Dentistry, Faculty of Dentistry, University of Kufa, Najaf 54001, Iraq;
| | - Julfikar Haider
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (N.S.); (J.H.); (J.Y.)
- Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Abdulrahman Alshabib
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Alshame Alshame
- Department of Oral Surgery, Faculty of Dentistry, Sebha University, Sebha 18758, Libya;
| | - Julian Yates
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (N.S.); (J.H.); (J.Y.)
| |
Collapse
|
10
|
Saleem M, Zahid S, Ghafoor S, Khalid H, Iqbal H, Zeeshan R, Ahmad S, Asif A, Khan AS. Physical, mechanical, and in vitro biological analysis of bioactive fibers‐based dental composite. J Appl Polym Sci 2020. [DOI: 10.1002/app.50336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mehvish Saleem
- Department of Dental Materials University of Health Sciences Lahore Pakistan
| | - Saba Zahid
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sarah Ghafoor
- Department of Oral Biology University of Health Sciences Lahore Pakistan
| | - Hina Khalid
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Haffsah Iqbal
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sarfraz Ahmad
- Department of Chemistry University of Malaya Kuala Lumpur Malaysia
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| |
Collapse
|
11
|
Bangera MK, Kotian R, N R. Effect of titanium dioxide nanoparticle reinforcement on flexural strength of denture base resin: A systematic review and meta-analysis. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:68-76. [PMID: 32123548 PMCID: PMC7037538 DOI: 10.1016/j.jdsr.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
The study was designed to assess the change in flexural strength of unmodified heat cure denture base polymer resin on reinforcement with titanium dioxide nanoparticles in different concentrations. In vitro, randomized control trials reporting flexural strength of titanium dioxide nanoparticle reinforced resin were selected. The review was formulated based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses- Protocol (PRISMA-P) guidelines. Quality assessment was performed according to Consolidated Standards Of Reporting Trials (CONSORT) guidelines and risk of bias Cochrane tool. Six articles in the category of 1%, 3%, 5% weight fractions of titanium dioxide nanoparticles were subjected to a meta-analysis. A meta-analysis was performed using random-effects at a 95% confidence interval. Within the limitations of the study, it can be assumed that there is no precise conformity on the ideal titanium dioxide nanoparticle concentration required to improve the flexural strength of the polymer. Stringent use of standard ISO guidelines may help in obtaining consistent results.
Collapse
Affiliation(s)
- Madhu Keshava Bangera
- Department of Dental Materials, Manipal College of Dental Sciences, Mangalore. Manipal Academy of Higher Education, Manipal. Karnataka-575001, India
| | - Ravindra Kotian
- Department of Dental Materials, Manipal College of Dental Sciences, Mangalore. Manipal Academy of Higher Education, Manipal. Karnataka-575001, India
| | - Ravishankar N
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal. Karnataka-576104, India
| |
Collapse
|
12
|
Hussain N, Khalid H, AlMaimouni YK, Ikram S, Khan M, Din SU, Talal A, Khan AS. Microwave assisted urethane grafted nano-apatites for dental adhesives. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520956263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objectives were to synthesize urethane grafted nano-apatite in shortest possible time duration using the microwave irradiation method and to utilize them for synthesis of experimental dental adhesives. The structural, morphological, thermal, and mechanical behavior of synthesized grafted nano-apatite were investigated. Then, these grafted nano-apatite particles were incorporated in various concentrations that is, 5wt.%, 10wt.%, and 15wt.% into dimethacrylate resins to develop bioactive adhesives. The weight measurement analysis in deionized water and phosphate buffer saline, Knoop micro-hardness, and degree of conversion were evaluated. The bacterial adhesion was investigated with Streptococcus mutans at 6h, 24h, and 48h. Statistical analysis was conducted using one-way ANOVA. The urethane dimethacrylate was successfully grafted on the nano-apatite surface and spectroscopic analysis confirmed the presence of urethane and phosphate peaks. An inverse relationship was found in both media between the concentration of grafted fillers and weight loss. No significant difference was observed in the micro-hardness and degree of conversion among the groups, whereby the degree of conversion for all groups was in the range of 83% to 86%. The mean number of bacterial colonies was significantly lower in the 15wt.% group compared to 5wt.% and 10wt.%. The grafted nano-apatite presented favorable results for adhesive resin incorporation, where 15wt.% group comparatively showed superior results than other groups.
Collapse
Affiliation(s)
- Natasha Hussain
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Hina Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Samman Ikram
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore, Pakistan
| | - Shahab Ud Din
- Dentistry and Allied Disciplines, Shaheed Zulfiqar Ali Bhutto Medical University/ Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Ahmed Talal
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
13
|
He C, Ledezma UH, Gurnani P, Albelha T, Thurecht KJ, Correia R, Morgan SP, Patel P, Alexander C, Korposh S. Surface polymer imprinted optical fibre sensor for dose detection of dabrafenib. Analyst 2020; 145:4504-4511. [PMID: 32409797 DOI: 10.1039/d0an00434k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dabrafenib is one of the most widely used of the new generation of targeted anti-cancer drugs. However, its therapeutic window varies for different patients and so there is an unmet need for methods to monitor the dose of drug which the patient receives and at the specific site where it acts. In the case of cancers, it is critical to measure the concentration of drug not just in the bloodstream overall, but in or near tumours, as these will not be the same over multiple time periods. A novel sensor based on an optical fibre long period grating (LPG) modified with a molecular imprinted polymer (MIP) has been developed with the ultimate aim of achieving minimally invasive measurements of Dabrafenib at the tumour site. A molecularly imprinted polymer specific for Dabrafenib was coated on a methacryloylalkoxysilane-functionalised optical fibre long period grating. In vitro experimental results demonstrate that the Dabrafenib sensitivity is 15.2 pm (μg mL-1)-1 (R2 = 0.993) with a limit of detection (LoD) of 74.4 μg mL-1 in serum solution. Moreover, the proposed sensor shows selective response to Dabrafenib over structurally similar 2-Aminoquinoline.
Collapse
Affiliation(s)
- Chenyang He
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A polymer electrolyte by ozonolysis of poly(3-(trimethoxysilyl) propyl methacrylate) grafted on natural rubber latex in colloid state and its application. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00714-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Yang RL, Zhu YJ, Chen FF, Qin DD, Xiong ZC. Bioinspired Macroscopic Ribbon Fibers with a Nacre-Mimetic Architecture Based on Highly Ordered Alignment of Ultralong Hydroxyapatite Nanowires. ACS NANO 2018; 12:12284-12295. [PMID: 30475582 DOI: 10.1021/acsnano.8b06096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A variety of biological materials in natural organisms supply a rich source of structural design guidelines and inspirations for the construction of advanced structural materials with excellent mechanical properties. In this work, inspired by the natural nacre and human bone, a kind of flexible macroscopic ribbon fiber made from highly ordered alignment of ultralong hydroxyapatite (HAP) nanowires and sodium polyacrylate (PAAS) with a "brick-and-mortar" layered structure has been developed by a scalable and convenient wet-spinning method. The quasi-long-range orderly liquid crystal of one-dimensional ultralong hydroxyapatite nanowires is employed and spun into the continuous flexible macroscopic ribbon fiber. In this work, highly ordered ultralong HAP nanowires act as the hard "brick" and PAAS acts as the soft "mortar", and the nacre-mimetic layered architecture is obtained. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber exhibits superior mechanical properties, and the maximum tensile strength and Young's modulus are as high as 203.58 ± 45.38 MPa and 24.56 ± 5.35 GPa, respectively. In addition, benefiting from the excellent flexibility and good knittability, the as-prepared macroscopic HAP/PAAS ribbon fiber can be woven into various flexible macroscopic architectures. Additionally, the as-prepared flexible macroscopic HAP/PAAS ribbon fiber can be further functionalized by incorporation of various functional components, such as magnetic and photoluminescent constituents. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber has potential applications in various fields such as smart wearable devices, optical devices, magnetic devices, and biomedical engineering.
Collapse
Affiliation(s)
- Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Fei-Fei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Dong-Dong Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
| |
Collapse
|
16
|
Silane adhesion mechanism in dental applications and surface treatments: A review. Dent Mater 2018; 34:13-28. [DOI: 10.1016/j.dental.2017.09.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 11/22/2022]
|
17
|
Kul E, Aladağ Lİ, Yesildal R. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers. J Prosthet Dent 2016; 116:803-810. [PMID: 27189841 DOI: 10.1016/j.prosdent.2016.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
Abstract
STATEMENT OF PROBLEM Poly(methyl methacrylate) (PMMA) is widely used in prosthodontics as a denture base material. However, it has several disadvantages, including low strength and low thermal conductivity. PURPOSE The purpose of this in vitro study was to evaluate thermal conductivity and flexural strength after adding powdered Ag, TiO2, ZrO2, Al2O3, SiC, SiC-nano, Si3N4, and HA-nano in ratios of 10 wt% to PMMA. MATERIAL AND METHODS A total of 144 specimens were fabricated and divided into 18 groups. Specimens were left in water for 30 days. Thermal conductivity values were measured using a heat flowmeter, flexural strength was measured with a 3-point bend test, and specimens were investigated with environmental scanning electron microscopy. One-way ANOVA was used to compare means followed by using Duncan multiple range test (α=.05). RESULTS The thermal conductivity value of PMMA increased significantly after the addition of Si3N4, SiC, Al2O3, SiC-nano, TiO2, ZrO2, HA-nano, and Ag. Progressive increases in thermal conductivity were observed in Si3N4, SiC, and Al2O3 fillers. Flexural strength values of the control group were not significantly different from those of the SiC, Al2O3, or Ag group (P>.05). In the other groups, flexural strength values decreased significantly (P<.05). On the basis of electron microscopy, we observed that Si3N4, SiC, and Al2O3 powders had higher thermal conductivity values that are dissipated more homogeneously in PMMA. CONCLUSIONS Although the addition of 10 wt% SiC, Al2O3, and Ag powder to PMMA significantly increased thermal conductivity, the flexural strength values of PMMA were not significantly changed.
Collapse
Affiliation(s)
- Esra Kul
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry at Atatürk University, Erzurum, Turkey.
| | - Lütfü İhsan Aladağ
- Professor, Department of Prosthodontics, Faculty of Dentistry at Atatürk University, Erzurum, Turkey
| | - Ruhi Yesildal
- Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering at Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Gan X, Wu T, Zhu Z, Wu X, Liao Y, Yu H, Wang H. Fracture toughness comparison of five indirect resin composites under the effect of thermal cycling. PARTICULATE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1080/02726351.2015.1058873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Lung CYK, Sarfraz Z, Habib A, Khan AS, Matinlinna JP. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J Mech Behav Biomed Mater 2016; 54:283-94. [DOI: 10.1016/j.jmbbm.2015.09.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
20
|
Bai H, Walsh F, Gludovatz B, Delattre B, Huang C, Chen Y, Tomsia AP, Ritchie RO. Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:50-56. [PMID: 26554760 DOI: 10.1002/adma.201504313] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials.
Collapse
Affiliation(s)
- Hao Bai
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Flynn Walsh
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bernd Gludovatz
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Benjamin Delattre
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Laboratoire de Physique des Surfaces et Interfaces, Université de Mons, Mons, 7000, Belgium
| | - Caili Huang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuan Chen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Antoni P Tomsia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
21
|
Liu Z, Tang Y, Kang T, Rao M, Li K, Wang Q, Quan C, Zhang C, Jiang Q, Shen H. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement. Colloids Surf B Biointerfaces 2015; 131:39-46. [DOI: 10.1016/j.colsurfb.2015.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/25/2015] [Accepted: 04/13/2015] [Indexed: 12/28/2022]
|
22
|
Quan C, Tang Y, Liu Z, Rao M, Zhang W, Liang P, Wu N, Zhang C, Shen H, Jiang Q. Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)-based bone cement. J Biomed Mater Res B Appl Biomater 2015; 104:576-84. [PMID: 25953071 DOI: 10.1002/jbm.b.33428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/13/2014] [Accepted: 03/30/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Changyun Quan
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Yong Tang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou 510120 People's Republic of China
| | - Zhenzhen Liu
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Minyu Rao
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Wei Zhang
- Department of Outpatient, First Affiliated Hospital; Sun Yat-sen University; Guangzhou 510008 People's Republic of China
| | - Peiqing Liang
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Nan Wu
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Chao Zhang
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou 510120 People's Republic of China
| | - Qing Jiang
- School of Engineering; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| |
Collapse
|
23
|
Jin T, Zhou Z, Liu Z, Xiao G, Yuan G, Shu X. Sensitivity of PMMA nanoindentation measurements to strain rate. J Appl Polym Sci 2015. [DOI: 10.1002/app.41896] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tao Jin
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology; Taiyuan 030024 China
| | - Zhiwei Zhou
- State Key Laboratory of Frozen Soil Engineering; Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences; Lanzhou 730000 China
| | - Zhenguo Liu
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology; Taiyuan 030024 China
| | - Gesheng Xiao
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology; Taiyuan 030024 China
| | - Guozheng Yuan
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology; Taiyuan 030024 China
| | - Xuefeng Shu
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology; Taiyuan 030024 China
| |
Collapse
|
24
|
Naik A, Best SM, Cameron RE. The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 48:642-50. [PMID: 25579967 DOI: 10.1016/j.msec.2014.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 10/06/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
This study investigates the influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. Three different silanes (mercaptopropyl trimethoxy silane (MPTMS), aminopropyl trimethoxy silane (APTMS) and aminopropyltriethoxy silane (APTES)) were applied to HA substrates in order to study the effect of head group (which binds to the polymer) and tail group (which binds to the surface hydroxyl groups in HA). A composite of hydroxyapatite (HA) and poly(d,l lactide-co-glycolide (50:50)) (PLGA) was investigated. The influence of concentration, the reaction time, drying temperature and substrate surface on silanisation was examined. TGA was used to detect the degree of silanisation. HA with MPTMS (1wt.% MPTMS with reaction time of 1h) was used as filler in PLGA-30wt.% HA composites for an in-vitro degradation study carried out in PBS. In addition, the mechanical properties of the composites were studied. Silanisation affects the properties of the composite by improving the bonding at the interface and hence it was found to influence the plastic mechanical properties rather than the elastic mechanical properties or the degradation profile of the composite.
Collapse
Affiliation(s)
- Ashutosh Naik
- Cambridge Centre for Medical Materials, University of Cambridge, Department of Materials Science and Metallurgy, 27, Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Serena M Best
- Cambridge Centre for Medical Materials, University of Cambridge, Department of Materials Science and Metallurgy, 27, Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Ruth E Cameron
- Cambridge Centre for Medical Materials, University of Cambridge, Department of Materials Science and Metallurgy, 27, Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
25
|
Chow WS, Ng K, Mohd Ishak ZA, Hashim H, Mohd Noor SNF. Human Gingival Fibroblasts Cell Viability of Poly(Lactic Acid) Powder Reinforced PMMA/Hydroxyapatite Biocomposites. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.936590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
da Cruz Perez LE, Lucia Machado A, Eduardo Vergani C, Andrade Zamperini C, Cláudia Pavarina A, Vicente Canevarolo S. Resistance to impact of cross-linked denture base biopolymer materials: Effect of relining, glass flakes reinforcement and cyclic loading. J Mech Behav Biomed Mater 2014; 37:33-41. [DOI: 10.1016/j.jmbbm.2014.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/03/2014] [Indexed: 11/15/2022]
|
27
|
Cisneros-Pineda OG, Herrera Kao W, Loría-Bastarrachea MI, Veranes-Pantoja Y, Cauich-Rodríguez JV, Cervantes-Uc JM. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:157-63. [DOI: 10.1016/j.msec.2014.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/05/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
|
28
|
Rao M, Su Q, Liu Z, Liang P, Wu N, Quan C, Jiang Q. Preparation and characterization of a poly(methyl methacrylate) based composite bone cement containing poly(acrylate-co-silane) modified hydroxyapatite nanoparticles. J Appl Polym Sci 2014. [DOI: 10.1002/app.40587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minyu Rao
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| | - Qiangwei Su
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| | - Zhenzhen Liu
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| | - Peiqing Liang
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| | - Nan Wu
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| | - Changyun Quan
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| | - Qing Jiang
- Biomedical Engineering Program; School of Engineering, Sun Yat-Sen University, Guangzhou; 510006 China
| |
Collapse
|
29
|
Alsharif SO, Bin Md Akil H, Abbas Abd El-Aziz N, Arifin Bin Ahmad Z. Effect of alumina particles loading on the mechanical properties of light-cured dental resin composites. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.matdes.2013.07.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Bhat KA, Leo Prakash P, Manoharan N, Lakshmibai A, Sangeetha D. Fabrication of polymethyl methacrylate/polysulfone/nanoceramic composites for orthopedic applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.37581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Ravarian R, Wei H, Rawal A, Hook J, Chrzanowski W, Dehghani F. Molecular interactions in coupled PMMA–bioglass hybrid networks. J Mater Chem B 2013; 1:1835-1845. [DOI: 10.1039/c2tb00251e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Habekost LV, Camacho GB, Lima GS, Ogliari FA, Piva E, Moraes RR. Properties of particulate resin-luting agents with phosphate and carboxylic functional methacrylates as coupling agents. J Appl Polym Sci 2012. [DOI: 10.1002/app.37627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent Mater 2012; 28:467-77. [DOI: 10.1016/j.dental.2012.02.009] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/11/2011] [Accepted: 02/17/2012] [Indexed: 11/24/2022]
|
34
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|