1
|
Murugan G, Nilsuwan K, Prodpran T, Ponnusamy A, Rhim JW, Kim JT, Benjakul S. Active Fish Gelatin/Chitosan Blend Film Incorporated with Guava Leaf Powder Carbon Dots: Properties, Release and Antioxidant Activity. Gels 2024; 10:281. [PMID: 38667700 PMCID: PMC11048872 DOI: 10.3390/gels10040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Active packaging is an innovative approach to prolonge the shelf-life of food products while ensuring their quality and safety. Carbon dots (CDs) from biomass as active fillers for biopolymer films have been introduced to improve their bioactivities as well as properties. Gelatin/chitosan (G/C) blend films containing active guava leaf powder carbon dots (GL-CDs) at various levels (0-3%, w/w) were prepared by the solvent casting method and characterized. Thickness of the control increased from 0.033 to 0.041 mm when 3% GL-CDs were added (G/C-CD-3%). Young's modulus of the resulting films increased (485.67-759.00 MPa), whereas the tensile strength (26.92-17.77 MPa) and elongation at break decreased (14.89-5.48%) as the GL-CDs' level upsurged (p < 0.05). Water vapor barrier property and water contact angle of the film were enhanced when incorporated with GL-CDs (p < 0.05). GL-CDs had a negligible impact on film microstructure, while GL-CDs interacted with gelatin or chitosan, as determined by FTIR. The release of GL-CDs from blend films was more pronounced in water than in alcoholic solutions (10-95% ethanol). The addition of GL-CDs improved the UV light barrier properties and antioxidant activities of the resultant films in a dose-dependent manner. Thus, GL-CD-added gelatin/chitosan blend films with antioxidant activities could be employed as potential active packaging for the food industry.
Collapse
Affiliation(s)
- Gokulprasanth Murugan
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.-W.R.); (J.T.K.)
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.-W.R.); (J.T.K.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (G.M.); (K.N.); (T.P.); (A.P.)
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.-W.R.); (J.T.K.)
| |
Collapse
|
2
|
Demircan B, Velioglu YS. Revolutionizing single-use food packaging: a comprehensive review of heat-sealable, water-soluble, and edible pouches, sachets, bags, or packets. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 38117069 DOI: 10.1080/10408398.2023.2295433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Edible food packaging has emerged as a critical focal point in the discourse on sustainability, prompting the development of innovative solutions, notably in the realm of edible pouches. Often denoted as sachets, bags, or packets, these distinct designs have garnered attention owing to their water-soluble and heat-sealable attributes, tailored explicitly for single-use applications encompassing oils, instant or dry foods, and analogous products. While extant literature extensively addresses diverse facets of edible films, this review addresses a conspicuous void by presenting a consolidated and specialized overview dedicated to the intricate domain of edible pouches. Through a meticulous synthesis of current research, we aim to illuminate the trajectory of advancements made thus far, delving into critical aspects, including materials, production techniques, functional attributes, consumer perceptions, and regulatory considerations. By furnishing a comprehensive perspective on the potential, challenges, and opportunities inherent in edible pouches, our overarching aim is to stimulate collaborative endeavors in research, innovation, and exploration. In doing so, we aspire to catalyze the broader adoption of sustainable packaging solutions tailored to the exigencies of single-use applications.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food Engineering, Ankara University, Ankara, Turkey
| | | |
Collapse
|
3
|
Malinowski R, Fiedurek K, Rytlewski P, Puszczykowska N, Kaczor D, Stasiek A. The structure and selected properties of poly(ε-caprolactone)-based biodegradable composites with high calcium carbonate concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161528. [PMID: 36638989 DOI: 10.1016/j.scitotenv.2023.161528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The article refers to new polycaprolactone (PCL) composites with high concentration of calcium carbonate (CC). The objective of the present study was the manufacturing of PCL-based biodegradable composites, containing from 24 to 75 % of CC by mass, along with analyses of changes in selected properties of the obtained PCL composites, occurring upon various amounts of CC. Importantly, in the study relatively cheap and unmodified kind of CC has been used to determine the changeover cost of produced composites. Qualitative and quantitative analyses in addition to structure analysis of the obtained composites, including the distribution of the filler particles and their average dimensions were conducted. Furthermore, the mechanical and thermal properties, mass melt flow rate and the density have been determined. Finally, a commercially important economic analysis has been presented. A significant influence of CC on the mechanical properties of PCL was found. Specifically, the reduction of its relative elongation at break and impact strength, as well as the increase of its flexural modulus and bending strength. An increase in the thermal stability of the produced composites was also observed, however the characteristic temperatures of phase transitions as well as the degree of crystallinity did not change significantly. Considering the results of the density tests, an increase in the CC content resulted in a significant decrease in the unit price of the produced composites. This is of particular application importance, because a lower cost material with new properties could be obtained.
Collapse
Affiliation(s)
- Rafał Malinowski
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland.
| | - Kacper Fiedurek
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Piotr Rytlewski
- Faculty of Materials Engineering, Kazimierz Wielki University, 30 Chodkiewicza Street, 85-064 Bydgoszcz, Poland
| | - Natalia Puszczykowska
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Daniel Kaczor
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Andrzej Stasiek
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Biswas A, Cheng HN, Kuzniar G, He Z, Kim S, Furtado RF, Alves CR, Sharma BK. Bilayer Films of Poly(lactic acid) and Cottonseed Protein for Packaging Applications. Polymers (Basel) 2023; 15:polym15061425. [PMID: 36987206 PMCID: PMC10051513 DOI: 10.3390/polym15061425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Poly(lactic acid) (PLA) is a common biobased film-former made from renewable biomass, such as polysaccharides from sugarcane, corn, or cassava. It has good physical properties but is relatively expensive when compared to the plastics used for food packaging. In this work, bilayer films were designed, incorporating a PLA layer and a layer of washed cottonseed meal (CSM), an inexpensive agro-based raw material from cotton manufacturing, where the main component is cottonseed protein. These bilayer films were made through the solvent casting method. The combined thickness of the PLA/CSM bilayer film was between 47 and 83 μm. The thickness of the PLA layer in this film was 10%, 30%, or 50% of the total bilayer film’s thickness. Mechanical properties of the films, opacity, water vapor permeation, and thermal properties were evaluated. Since PLA and CSM are both agro-based, sustainable, and biodegradable, the bilayer film may be used as an eco-friendlier food packaging material, which helps reduce the environmental problems of plastic waste and microplastics. Moreover, the utilization of cottonseed meal may add value to this cotton byproduct and provide a potential economic benefit to cotton farmers.
Collapse
Affiliation(s)
- Atanu Biswas
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, IL 61604, USA
- Correspondence: (A.B.); (H.N.C.)
| | - Huai N. Cheng
- Southern Regional Research Center, USDA Agricultural Research Service, New Orleans, LA 70124, USA
- Correspondence: (A.B.); (H.N.C.)
| | - Gary Kuzniar
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, IL 61604, USA
| | - Zhongqi He
- Southern Regional Research Center, USDA Agricultural Research Service, New Orleans, LA 70124, USA
| | - Sanghoon Kim
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, IL 61604, USA
| | - Roselayne F. Furtado
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita 2270, Fortaleza 60511-110, CE, Brazil
| | - Carlucio R. Alves
- Chemistry Department, State University of Ceará, Silas Munguba Av. 1.700, Fortaleza 60740-020, CE, Brazil
| | - Brajendra K. Sharma
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA 19038, USA
| |
Collapse
|
5
|
Parlak ME, Uzuner K, Kirac FT, Ozdemir S, Dundar AN, Sahin OI, Dagdelen AF, Saricaoglu FT. Production and characterization of biodegradable bi-layer films from poly(lactic) acid and zein. Int J Biol Macromol 2023; 227:1027-1037. [PMID: 36462592 DOI: 10.1016/j.ijbiomac.2022.11.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Recently, packaging industry has turned to biodegradable packaging, and poly(lactic acid) has become the most remarkable polymer. However, the high oxygen permeability of PLA films significantly limits their use. Therefore, this study, it was aimed to improve the oxygen barrier properties of PLA films without adversely affecting the mechanical and water vapor barrier properties. Biodegradable PLA-Zein bi-layer films were produced by changing PLA and zein thickness. Transparent and UV barrier bi-layer films were obtained. Mechanical properties of PLA films were improved by the production of bi-layer films. Water vapor permeability of bi-layer films increased whereas the permeance decreased with zein coating of PLA. Multi-criteria decision hierarchy was used to select the best bi-layer films based on mechanical, permeance, and opacity results. Oxygen barrier properties of PLA film significantly improved by zein coating, and hydrophobicity of PLA film was not affected by zein coating. The crystallization and melting temperatures of films decreased when compared to PLA films, supporting the mechanical results. Homogeneous, non-porous, and smooth film surface was obtained and zein layer was in good compatibility with PLA layer. These results suggest that zein coatings could be used to decrease oxygen permeability of PLA films without negatively affecting other properties.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Kubra Uzuner
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Fatma Tuba Kirac
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Sebahat Ozdemir
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 77200 Yalova, Turkey
| | - Adnan Fatih Dagdelen
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey.
| |
Collapse
|
6
|
Chen J, Li Y, Wang Y, Yakubu S, Tang H, Li L. Active polylactic acid/tilapia fish gelatin-sodium alginate bilayer films: Application in preservation of Japanese sea bass (Lateolabrax japonicus). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Influence of Gelatin-Based Coatings Crosslinked with Phenolic Acids on PLA Film Barrier Properties. COATINGS 2022. [DOI: 10.3390/coatings12070993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Single-use plastics are a major source of pollution and biodegradable polymers could be the best substitute, as they possess similar barrier and functional properties. Aiming at improving barrier properties and providing antioxidant bioactivity, PLA (PolyLactic Acid) films were coated with a crosslinked suspension of plasticized gelatin incorporating phenolic compounds. The coating process induced weak modifications of PLA properties due to plasticization by moisture and glycerol from the coating suspension. Indeed, a double glass transition was displayed. The water vapor barrier properties of the PLA-coated films were not significantly affected. Phenolic compounds induced a crosslinking of the gelatin network, slightly decreasing the moisture sensitivity and surface hydrophilicity. Therefore, the mechanical properties of PLA were maintained after coating and their barrier properties were highly improved, with up to a 600-fold reduction of the oxygen transfer rate. These results make possible new applications for oxidation-sensitive foods, and even for semi-moist foods.
Collapse
|
8
|
Alias A, Wan MK, Sarbon N. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Morinval A, Averous L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis Morinval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| |
Collapse
|
10
|
Multilayer Films Based on Poly(lactic acid)/Gelatin Supplemented with Cellulose Nanocrystals and Antioxidant Extract from Almond Shell By-Product and Its Application on Hass Avocado Preservation. Polymers (Basel) 2021; 13:polym13213615. [PMID: 34771175 PMCID: PMC8587537 DOI: 10.3390/polym13213615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
In this work, poly(lactic acid) (PLA)/gelatin/PLA multilayer films supplemented with cellulose nanocrystals and antioxidant extract from almond shell (AS) by-products were developed by solvent casting technique for active food packaging. The almond shell antioxidant extract (ASE) was obtained by microwave-assisted extraction, while cellulose nanocrystals (CNCs) were extracted from AS by a sequential process of alkalization, acetylation and acid hydrolysis. Four formulations were obtained by adding 0 (control), 6 wt.% of ASE (FG/ASE), 4.5 wt.% of CNCs (FG/CNC) and 6 wt.% + 4.5 wt.% of ASE + CNCs, respectively, (FG/ASE + CNC) into fish gelatin (FG). PLA/FG/PLA multilayer films were prepared by stacking two outer PLA layers into a middle FG film. A surface modification of PLA by air atmospheric plasma treatment was optimized before multilayer development to improve PLA adhesion. Complete characterization of the multilayers underlined the FG/ASE + CNC formulation as a promising active reinforced packaging system for food preservation, with low values of transparency, lightness and whiteness index. A good adhesion and homogeneity of the multilayer system was obtained by SEM, and they also demonstrated low oxygen permeability (40.87 ± 5.20 cm3 mm m-2 day) and solubility (39.19 ± 0.16%) values, while mechanical properties were comparable with commercial plastic films. The developed multilayer films were applied to Hass avocado preservation. The initial degradation temperature (Tini), DSC parameters and in vitro antioxidant capacity of the films were in accordance with the low peroxide and anisidine values obtained from avocado pulp after packaging for 14 days at 4 °C. The developed PLA/FG/PLA films supplemented with 6 wt.% ASE+ 4.5 wt.% CNCs may be potential bioactive packaging systems for fat food preservation.
Collapse
|
11
|
Kim HJ, Hillmyer MA, Ellison CJ. Enhanced Polyester Degradation through Transesterification with Salicylates. J Am Chem Soc 2021; 143:15784-15790. [PMID: 34529416 DOI: 10.1021/jacs.1c07229] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyesters constitute nearly 10% of the global plastic market, but most are essentially non-degradable under ambient conditions or in engineered environments. A range of degradable polyesters have been developed as more sustainable alternatives; however, limitations of practical degradability and scalability have hindered their viability. Here, we utilized transesterification approaches, including in situ polymerization-transesterification, between a salicylate and a polyester to incorporate salicylate units into commercial polyester backbones. The strategy is scalable and practically relevant given that high molar mass polymers can be obtained from melt-processing of commercial polyesters using common compounders or extruders. Polylactide containing sparse salicylate moieties shows enhanced hydrolytic degradability in aqueous buffer, seawater, and alkaline solutions without sacrificing the thermal, mechanical, and O2 barrier properties of the parent material. Additionally, salicylate sequences were incorporated into polycaprolactone and a derivative of poly(ethylene terephthalate), and those modified polymers also exhibited facile degradation behavior in alkaline solution, further expanding the scope of this approach. This work provides insights and direction for the development of high-performance yet more sustainable and degradable alternatives to conventional polyesters.
Collapse
|
12
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|
13
|
Said N, Howell NK, Sarbon N. A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N.S. Said
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nazlin K. Howell
- Department of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - N.M Sarbon
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
14
|
Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Nilsuwan K, Guerrero P, Caba KDL, Benjakul S, Prodpran T. Fish gelatin films laminated with emulsified gelatin film or poly(lactic) acid film: Properties and their use as bags for storage of fried salmon skin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Nilsuwan K, Guerrero P, de la Caba K, Benjakul S, Prodpran T. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar Drugs 2020; 18:E214. [PMID: 32326635 PMCID: PMC7230273 DOI: 10.3390/md18040214] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Salvatore Iannace
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
18
|
Protein-Based Films: Advances in the Development of Biomaterials Applicable to Food Packaging. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09189-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Shankar S, Rhim JW. Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int J Biol Macromol 2018; 120:846-852. [DOI: 10.1016/j.ijbiomac.2018.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 12/28/2022]
|
20
|
|
21
|
|
22
|
Ji L, Gong M, Qiao W, Zhang W, Liu Q, Dunham RE, Gu J. A gelatin/PLA-b-PEG film of excellent gas barrier and mechanical properties. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1600-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Wang W, Xiao J, Chen X, Luo M, Liu H, Shao P. Fabrication and characterization of multilayered kafirin/gelatin film with one-way water barrier property. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Rivera-Briso AL, Serrano-Aroca Á. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers (Basel) 2018; 10:E732. [PMID: 30960657 PMCID: PMC6403723 DOI: 10.3390/polym10070732] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.
Collapse
Affiliation(s)
- Ariagna L Rivera-Briso
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 65, 46008 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
25
|
Beak S, Kim H, Song KB. Sea Squirt Shell Protein and Polylactic Acid Laminated Films Containing Cinnamon Bark Essential Oil. J Food Sci 2018; 83:1896-1903. [PMID: 29905946 DOI: 10.1111/1750-3841.14207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sea squirt (Halocynthia roretzi) shell protein (SSP) was used as a biodegradable film material and laminated with polylactic acid (PLA) to improve its physical and water barrier properties. Cinnamon bark oil (CBO) was incorporated into the SSP film as a bioactive material. After laminating with PLA, the tensile strength and elongation at break of the SSP film increased from 4.07 to 9.09 MPa and from 8.68 to 138.84%, respectively. In addition, water vapor permeability and water solubility decreased from 5.62 to 0.91 × 10-9 g m/m2 s Pa and from 42.17% to 23.93%, respectively. DSC results of the SSP films indicate that melting point temperature increased 140.05 to 163.52 °C by laminating PLA. The addition of 0.5%, 0.7%, and 1.0% CBO conferred the antimicrobial activity against four pathogenic bacteria to the SSP/PLA-laminated films. The SSP/PLA-laminated films containing CBO also had antioxidant activities. Therefore, the SSP/PLA-laminated films containing CBO are applicable as biodegradable packaging films. PRACTICAL APPLICATION Sea squirt shell has been discarded after the consumption of sea squirt, and sea squirt shell protein can be a base material for biodegradable films. In this study, sea squirt shell protein and polylactic acid laminated films containing cinnamon bark essential oil were developed. The developed films are promising environmentally-friendly alternatives for active packaging material.
Collapse
Affiliation(s)
- Songee Beak
- Dept. of Food Science and Technology, Chungnam National Univ., Daejeon, 34134, Republic of Korea
| | - Hyeri Kim
- Dept. of Food Science and Technology, Chungnam National Univ., Daejeon, 34134, Republic of Korea
| | - Kyung Bin Song
- Dept. of Food Science and Technology, Chungnam National Univ., Daejeon, 34134, Republic of Korea
| |
Collapse
|
26
|
Barrier properties and mechanical strength of bio-renewable, heat-sealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int J Biol Macromol 2018; 107:1724-1731. [DOI: 10.1016/j.ijbiomac.2017.10.038] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
|
28
|
Zhu JY, Tang CH, Yin SW, Yang XQ. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr Polym 2017; 181:727-735. [PMID: 29254029 DOI: 10.1016/j.carbpol.2017.11.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 11/27/2022]
Abstract
Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer.
Collapse
Affiliation(s)
- Jun-You Zhu
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, PR China
| | - Chuan-He Tang
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, PR China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
29
|
Zhu JY, Tang CH, Yin SW, Yang XQ. Development and characterisation of polylactic acid-gliadin bilayer/trilayer films as carriers of thymol. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-You Zhu
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Chuan-He Tang
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
30
|
Shankar S, Rhim JW. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Muller J, González-Martínez C, Chiralt A. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. MATERIALS 2017; 10:ma10080952. [PMID: 28809808 PMCID: PMC5578318 DOI: 10.3390/ma10080952] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023]
Abstract
The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films.
Collapse
Affiliation(s)
- Justine Muller
- Universidad Politécnica de Valencia, IIAD, Camino de Vera, s/n, 46022 València, Spain.
| | | | - Amparo Chiralt
- Universidad Politécnica de Valencia, IIAD, Camino de Vera, s/n, 46022 València, Spain.
| |
Collapse
|
32
|
Properties and Characteristics of Multi-Layered Films from Tilapia Skin Gelatin and Poly(Lactic Acid). FOOD BIOPHYS 2017. [DOI: 10.1007/s11483-017-9478-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Lee KY, Song KB. Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film. J Food Sci 2017; 82:706-710. [DOI: 10.1111/1750-3841.13650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Ka-Yeon Lee
- Dept. of Food Science and Technology; Chungnam Natl. Univ.; Daejeon 34134 Republic of Korea
| | - Kyung Bin Song
- Dept. of Food Science and Technology; Chungnam Natl. Univ.; Daejeon 34134 Republic of Korea
| |
Collapse
|
34
|
Domenek S, Fernandes-Nassar S, Ducruet V. Rheology, Mechanical Properties, and Barrier Properties of Poly(lactic acid). SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2016_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Kumar S, Mitra A, Halder D. Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.06.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydr Polym 2016; 146:36-45. [DOI: 10.1016/j.carbpol.2016.03.051] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
|
37
|
Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr Polym 2016; 135:18-26. [DOI: 10.1016/j.carbpol.2015.08.082] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022]
|
38
|
Martucci JF, Ruseckaite RA. Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Shankar S, Rhim JW. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym 2015; 130:353-63. [PMID: 26076636 DOI: 10.1016/j.carbpol.2015.05.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens.
Collapse
Affiliation(s)
- Shiv Shankar
- Department of Food Engineering and Bionanocomposite Research Institute, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, 534729 Jeonnam, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food Engineering and Bionanocomposite Research Institute, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, 534729 Jeonnam, Republic of Korea.
| |
Collapse
|
40
|
Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym 2014; 114:484-492. [DOI: 10.1016/j.carbpol.2014.08.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/08/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
|
41
|
Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny J. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 2014; 101:1122-33. [DOI: 10.1016/j.carbpol.2013.10.055] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 11/15/2022]
|
42
|
|
43
|
Soy protein – Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2013.03.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
|
45
|
Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny J. Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.03.025] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Rhim JW. Effect of PLA lamination on performance characteristics of agar/κ-carrageenan/clay bio-nanocomposite film. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 2012; 90:948-56. [PMID: 22840025 DOI: 10.1016/j.carbpol.2012.06.025] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/17/2012] [Accepted: 06/10/2012] [Indexed: 11/24/2022]
Abstract
The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1 wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1 wt.% and 5 wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants.
Collapse
|
48
|
|