1
|
Luo G, Li J, Qin X, Wang Q, Zhong J. Improved moisture barrier and mechanical properties of rice protein/sodium alginate films for banana and oil preservation: Effect of the type and addition form of fatty acid. Food Chem 2024; 460:140764. [PMID: 39121763 DOI: 10.1016/j.foodchem.2024.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Attenuating the moisture sensitivity of hydrophilic protein/polysaccharide-based films without impairing other properties remains a challenge. Fatty acid dispersed in Pickering emulsion was proposed to overcome such issue. An increase in fatty acid chain length slightly reduced the water vapor permeability (WVP) of emulsion films. As the number of fatty acid double bonds increased from 0 to 1, the WVP of emulsion films was significantly decreased by 14.02% while mechanical properties were significantly enhanced. More hydrogen bonds and stronger electrostatic interactions in the presence of fatty acids were observed by molecular dynamics simulation. The weight loss of bananas coated with oleic acid-incorporated film-forming emulsion was 6.81% lower than that of uncoated group after 4 days, and the corresponding film was more effective to delay oil oxidation than the commercial polypropylene film, indicating that the film is a promising alternative to food coating and packaging material.
Collapse
Affiliation(s)
- Guoliu Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinsong Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qiang Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Hu Y, Xu W, Ren Z, Shi L, Zhang Y, Yang S, Weng W. Effect of drying rate on the physicochemical properties of soy protein isolate-soy oil emulsion films. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Sharif R, Mohsin M, Qutab HG, Saleem F, Bano S, Nasir R, Wahlah A. Durable water and oil repellents along with green chemistries: an overview. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Mori D, Jaroli T, Dudhat K, Vaishnav D, Parmar R, Kotadiya N, Bhalodiya M, Pashavan C. Preparation and characterization of slow dissolving linezolid salts for direct pulmonary delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Wang Y, Fan J, Zhao H, Song X, Ji Z, Xie C, Chen F, Meng Y. Biomimetic Robust Starch Composite Films with Super-Hydrophobicity and Vivid Structural Colors. Int J Mol Sci 2022; 23:ijms23105607. [PMID: 35628421 PMCID: PMC9145899 DOI: 10.3390/ijms23105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The starch composite films (SCFs) will be one of the best alternative packaging materials to petroleum based plastic films, which mitigates white pollution and energy consumption. However, weak mechanical stability, water resistance, and dyeability has hindered the application of SCFs. Herein, a bioinspired robust SCFs with super-hydrophobicity and excellent structural colors were prepared by fiber-reinforcement and assembling SiO2/Polydimethylsiloxane (PDMS) amorphous arrays on the surface of SCFs. The properties of the designed SCFs were investigated by various methods including scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), a tensile test, contact angle (CA) test, and an optical test. The results showed that the obtained SCFs possessed a higher tensile strength (55.17 MPa) attributed to the formed abundant hydrogen bonds between the molecular chains of the starch, cellulose fiber, and polyvinyl alcohol. Benefiting from the nanostructure with rough surface which were modified by materials with low surface free energy, the contact angle and sliding angle of the film reached up to 154° and 2°, respectively. The colors which were produced by the constructive interference of the coherent scattered light could cover all of the visible regions by tuning the diameters of the SiO2 nanoparticles. The strategy in the present study not only reinforces the mechanical strength and water resistance of SCFs but also provides an environmentally friendly way to color the them, which shows unprecedented application potential in packaging materials of the starch composite films.
Collapse
Affiliation(s)
- Yateng Wang
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianru Fan
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Hao Zhao
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Zhe Ji
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Congxia Xie
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yao Meng
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| |
Collapse
|
6
|
Lewis G, Coupland JN, Harte FM. Characterization of high-pressure jet-induced fat-protein complexation. J Dairy Sci 2021; 105:2119-2131. [PMID: 34955253 DOI: 10.3168/jds.2021-21251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
High-pressure jet (HPJ) processing of various dairy systems has been shown to disrupt fat droplets and casein micelles and cause a strong association between fat and casein proteins. The present work seeks to better describe this association between fat and casein using a model milk formulated from confectionary coating fat (3.6% wt/wt), micellar casein (3.4% wt/wt), and water (93% wt/wt), which was then pasteurized, homogenized, and then either HPJ-treated (400 MPa) or not (non-HPJ-treated, control). Upon ultracentrifugation, fat in the non-HPJ-treated model milk creamed due to its low density. In the HPJ-treated model milk, fat precipitated with protein into a thick bottom layer upon ultracentrifugation, reflecting a strong association between protein and fat. Differential scanning calorimetry (DSC) and time-domain nuclear magnetic resonance of the non-HPJ-treated model milk revealed fat in 2 physical states: (1) fat that is physically similar to the bulk fat and (2) fat that was in smaller droplets (i.e., homogenized) and crystallized at a lower temperature than the bulk fat. In contrast, DSC of HPJ-treated model milks supported the presence of fat in 3 states: (1) fat that is physically similar to the bulk fat, (2) fat in small droplets that required substantial supercooling beyond the non-HPJ-treated model milk to crystallize, and (3) fat in such small domains that it crystallizes in a less stable polymorphic form than the non-HPJ-treated model milk (or does not crystallize at all). The state of fat within the HPJ-treated model milk changed minimally with acidification, indicating that the association is not dependent on the charge on the casein. Cryogenic transmission electron microscopy (Cryo-TEM) of the non-HPJ-treated model milk revealed uniform casein micelles, which likely adsorbed to the surface of fat globules post-homogenization. In contrast, Cryo-TEM of the HPJ-treated model milk revealed a porous protein aggregate that likely had dispersed fat throughout. Together, these results suggest that HPJ treatment causes fat to be entrapped by casein proteins in very small domains.
Collapse
Affiliation(s)
- G Lewis
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - J N Coupland
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - F M Harte
- Department of Food Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
7
|
Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chem 2021; 355:129650. [PMID: 33799245 DOI: 10.1016/j.foodchem.2021.129650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
In this study, structural characteristics and formation mechanism of Mesona chinensis polysaccharide (MCP)-whey protein isolate (WPI) gels including group and molecular changes, intermolecular forces, crystallinity, and moisture migration were investigated under pH shifting conditions. Results showed that MCP and WPI formed a stable gel at pH 10. The free sulfhydryl groups and surface hydrophobicity of the MCP-WPI gels increased with the increasing pH. Hydrophobic and hydrogen bond interactions were the main molecular forces involved in the MCP-WPI gels, and electrostatic interactions and disulfide bonds played a complementary role. The pH conditions evidently influenced the secondary conformational structure of MCP-WPI gels. Molecular weight and X-ray diffraction (XRD) analysis indicated the formation of a hypocrystalline complex with molecular interaction. In addition, low-field magnetometry (LF-NMR) results showed that the T2 values decreased with increasing pH, indicating that water and gel matrix had the highest interactions at pH 10.
Collapse
|
8
|
Evaluation of Interactions Between Carboxymethylcellulose and Soy Protein Isolate and their Effects on the Preparation and Characterization of Composite Edible Films. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-020-09659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Amado LR, Silva KDS, Mauro MA. Effects of interactions between soy protein isolate and pectin on properties of soy protein‐based films. J Appl Polym Sci 2019. [DOI: 10.1002/app.48732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laís Ravazzi Amado
- Department of Food Engineering and TechnologySão Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences Street Cristóvão Colombo, 2265 São José do Rio Preto 15054‐000 Brazil
| | - Keila de Souza Silva
- Department of TechnologyMaringá State University (UEM) Avenue Ângelo Moreira da Fonseca, 1800 Umuarama 87506‐370 Brazil
| | - Maria Aparecida Mauro
- Department of Food Engineering and TechnologySão Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences Street Cristóvão Colombo, 2265 São José do Rio Preto 15054‐000 Brazil
| |
Collapse
|
10
|
PEREIRA GVDS, PEREIRA GVDS, NEVES EMPX, JOELE MRSP, LIMA CLSD, LOURENÇO LDFH. Effect of adding fatty acids and surfactant on the functional properties of biodegradable films prepared with myofibrillar proteins from acoupa weakfish (Cynoscion acoupa ). FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.03718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Exploring the pH-Induced Functional Phase Space of Human Serum Albumin by EPR Spectroscopy. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A systematic study on the self-assembled solution system of human serum albumin (HSA) and paramagnetic doxyl stearic acid (5-DSA and 16-DSA) ligands is reported covering the broad pH range 0.7–12.9, mainly using electron paramagnetic resonance (EPR) methods. It is tested to which extent the pH-induced conformational isomers of HSA reveal themselves in continuous wave (CW) EPR spectra from this spin probing approach in comparison to an established spin-labeling strategy utilizing 3-maleimido proxyl (5-MSL). Most analyses are conducted on empirical levels with robust strategies that allow for the detection of dynamic changes of ligand, as well as protein. Special emphasis has been placed on the EPR spectroscopic detection of a molten globule (MG) state of HSA that is typically found by the fluorescent probe 8-Anilino- naphthalene-1-sulfonic acid (ANS). Moreover, four-pulse double electron-electron resonance (DEER) experiments are conducted and substantiated with dynamic light scattering (DLS) data to determine changes in the solution shape of HSA with pH. All results are ultimately combined in a detailed scheme that describes the pH-induced functional phase space of HSA.
Collapse
|
12
|
Wang J, Qiu C, Narsimhan G, Jin Z. Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1210. [PMID: 29053573 PMCID: PMC5667016 DOI: 10.3390/ma10101210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
Abstract
Allyl isothiocyanate (AITC) are natural essential oil components that have outstanding antimicrobial activities. However, low water solubility, high volatility, and easy degradation by heat, restricting their application in food packing industry. Development of the inclusion complex of β-cyclodextrin/AITC (β-CD/AITC) is a promising solution. Furthermore, the incorporation of β-CD/AITC complex into polylactic acid (PLA) films would be an attractive method to develop food antimicrobial materials. The aim of this study was to evaluate the enhancement in physicochemical properties, antimicrobial activities, and controlled release of β-CD/AITC from such films. The addition of β-CD/AITC significantly increased the flexibility and thermal stability of films. The Fourier transform infrared (FTIR) results revealed that the interactions between β-CD/AITC and PLA films occurred. The controlled release of AITC encapsulated in β-CD was significantly affected by relative humidity and temperature. The PLA films containing β-CD/AITC can be applied as an effective antimicrobial packing material for food and non-food applications.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, 225 South University Street, Purdue University, West Lafayette, IN 47907, USA.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Díaz O, Candia D, Cobos Á. Whey protein film properties as affected by ultraviolet treatment under alkaline conditions. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int J Biol Macromol 2017; 94:258-265. [DOI: 10.1016/j.ijbiomac.2016.10.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 12/24/2022]
|
15
|
Effects of Cellulose Nanofibers Filling and Palmitic Acid Emulsions Coating on the Physical Properties of Fish Gelatin Films. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9459-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Liu C, Jiang S, Zhang S, Xi T, Sun Q, Xiong L. Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. STARCH-STARKE 2015. [DOI: 10.1002/star.201500252] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chengzhen Liu
- School of Food Science and Engineering; Qingdao Agricultural University; Qingdao P. R. China
| | - Suisui Jiang
- School of Food Science and Engineering; Qingdao Agricultural University; Qingdao P. R. China
| | - Shuangling Zhang
- School of Food Science and Engineering; Qingdao Agricultural University; Qingdao P. R. China
| | - Tingting Xi
- School of Food Science and Engineering; Qingdao Agricultural University; Qingdao P. R. China
| | - Qingjie Sun
- School of Food Science and Engineering; Qingdao Agricultural University; Qingdao P. R. China
| | - Liu Xiong
- School of Food Science and Engineering; Qingdao Agricultural University; Qingdao P. R. China
| |
Collapse
|
17
|
Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, Rascón-Chu A, Plascencia-Jatomea M, Barreras-Urbina CG, Rangel-Vázquez NA, Rodríguez-Félix F. Micro- and nanoparticles by electrospray: advances and applications in foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4699-707. [PMID: 25938374 DOI: 10.1021/acs.jafc.5b01403] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Micro- and nanotechnology are tools being used strongly in the area of food technology. The electrospray technique is booming because of its importance in developing micro- and nanoparticles containing an active ingredient as bioactive compounds, enhancing molecules of flavors, odors, and packaging coatings, and developing polymers that are obtained from food (proteins, carbohydrates), as chitosan, alginate, gelatin, agar, starch, or gluten. The electrospray technique compared to conventional techniques such as nanoprecipitation, emulsion-diffusion, double-emulsification, and layer by layer provides greater advantages to develop micro- and nanoparticles because it is simple, low cost, uses a low amount of solvents, and products are obtained in one step. This technique could also be applied in the agrifood sector for the preparation of controlled and/or prolonged release systems of fertilizer or agrochemicals, for which more research must be conducted.
Collapse
Affiliation(s)
- José A Tapia-Hernández
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Patricia I Torres-Chávez
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Benjamín Ramírez-Wong
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Agustín Rascón-Chu
- ‡Laboratory of Biopolymers, Research Center for Food and Development, CIAD, A. C., 83000 Hermosillo, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Carlos G Barreras-Urbina
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Norma A Rangel-Vázquez
- §Department of Metalmechanical, Aguascalientes Institute of Technological, Aguascalientes, Aguascalientes, Mexico
| | - Francisco Rodríguez-Félix
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| |
Collapse
|
18
|
Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 2015; 121:155-62. [DOI: 10.1016/j.carbpol.2014.12.040] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022]
|
19
|
Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film. MATERIALS 2015. [PMCID: PMC5455550 DOI: 10.3390/ma8052346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.
Collapse
|
20
|
Arise AK, Amonsou EO, Ijabadeniyi OA. Influence of extraction methods on functional properties of protein concentrates prepared from South African bambara groundnut landraces. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12746] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abimbola K. Arise
- Department of Biotechnology and Food Technology; Faculty of Applied Sciences; Durban University of Technology; PO Box 1334 Durban 4001 South Africa
- Department of Home Economics and Food Science; Faculty of Agriculture; University of Ilorin; P.M.B. 1515, Ilorin Nigeria
| | - Eric O. Amonsou
- Department of Biotechnology and Food Technology; Faculty of Applied Sciences; Durban University of Technology; PO Box 1334 Durban 4001 South Africa
| | - Oluwatosin A. Ijabadeniyi
- Department of Biotechnology and Food Technology; Faculty of Applied Sciences; Durban University of Technology; PO Box 1334 Durban 4001 South Africa
| |
Collapse
|
21
|
Sun Q, Xi T, Li Y, Xiong L. Characterization of corn starch films reinforced with CaCO3 nanoparticles. PLoS One 2014; 9:e106727. [PMID: 25188503 PMCID: PMC4154760 DOI: 10.1371/journal.pone.0106727] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022] Open
Abstract
The characterization of corn starch (CS) films impregnated with CaCO3 nanoparticles was investigated. Criteria such as morphology, crystallinity, water vapor permeability (WVP), opacity, and mechanical properties were the focus of the investigation. It was found that the CaCO3 contents had significant effects on the tensile properties of the nanocomposite films. The addition of CaCO3 nanoparticles to the CS films significantly increased tensile strength from 1.40 to 2.24 MPa, elongation from 79.21 to 118.98%, and Young’s modulus from 1.82 to 2.41 MPa. The incorporation of CaCO3 nanoparticles increased the opacity of films, lowered the degree of WVP and film solubility value compared to those of the CS films. The results of scanning electron microscopy (SEM) showed that with the increase of CaCO3 nanoparticles content in starch films, the roughness of the films increased, and pores or cavities were found on the surface of the films, while small cracks were observed in the structures of the fractured surfaces. X-ray diffraction showed that the addition of nanoparticles increased the peaks in the intensity of films.
Collapse
Affiliation(s)
- Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail:
| | - Tingting Xi
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ying Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Liu Xiong
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
22
|
Ciannamea EM, Stefani PM, Ruseckaite RA. Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.12.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Peña-Rodriguez C, Martucci JF, Neira LM, Arbelaiz A, Eceiza A, Ruseckaite RA. Functional properties and in vitro antioxidant and antibacterial effectiveness of pigskin gelatin films incorporated with hydrolysable chestnut tannin. FOOD SCI TECHNOL INT 2014; 21:221-31. [DOI: 10.1177/1082013214525429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The impact of the incorporation of 10% w/w of hydrolyzable chestnut tannin into pigskin gelatin (G) films plasticized with glycerol (Gly) on the physicochemical properties as well as the in vitro antioxidant and antibacterial effectiveness against food-borne pathogens such as Escherichia coli and Streptococcus aureus was investigated. A higher tendency to both redness (a*) and yellowness (b*) coloration characterized gelatin films incorporated with chestnut tannin. The reduced lightness (L) and transparency of gelatin–chestnut tannin films plasticized with 30% w/w Gly might be associated with certain degree of phase separation which provoked the migration of the plasticizer to the film surface. The incorporation of chestnut tannin and glycerol affected the chemical structure of the resultant films due to the establishment of hydrogen interactions between components as revealed by Fourier transform infrared spectroscopy. These interactions reduced gelatin crystallinity and seemed to be involved in the substantial decrease of the water uptake of films with tannin, irrespective of the glycerol level. Such interactions had minor effect on tensile properties being similar to those of the control films (without chestnut tannin) at the same glycerol level. Films modified with 10% w/w chestnut tannin showed significant (P < 0.05) 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ca. from 0 ± 0.033 to 87.1 ± 0.002% for chestnut tannin-free and chestnut tannin-containing gelatin films. The limited inhibitory activity of films incorporated with 10% w/w chestnut tannin against the selected bacteria evidenced by disk diffusion method probably resulted from the interactions within the film restricting the diffusion of the active agent into the agar medium. The more modest protective effect observed against a Gram-positive bacterium ( S. aureus) was also discussed.
Collapse
Affiliation(s)
- Cristina Peña-Rodriguez
- Materials+Technologies Group, Dept. of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country, Donostia-San Sebastián, Spain
| | - Josefa F Martucci
- Research Institute of Material Science and Technology (INTEMA), Mar del Plata, Argentina
| | - Laura M Neira
- Research Institute of Material Science and Technology (INTEMA), Mar del Plata, Argentina
| | - Aitor Arbelaiz
- Materials+Technologies Group, Dept. of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country, Donostia-San Sebastián, Spain
| | - Arantxa Eceiza
- Materials+Technologies Group, Dept. of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country, Donostia-San Sebastián, Spain
| | - Roxana A Ruseckaite
- Research Institute of Material Science and Technology (INTEMA), Mar del Plata, Argentina
| |
Collapse
|
24
|
Wang Z, Zhou J, Wang XX, Zhang N, Sun XX, Ma ZS. The effects of ultrasonic/microwave assisted treatment on the water vapor barrier properties of soybean protein isolate-based oleic acid/stearic acid blend edible films. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.07.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Silva NHCS, Vilela C, Marrucho IM, Freire CSR, Pascoal Neto C, Silvestre AJD. Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B 2014; 2:3715-3740. [DOI: 10.1039/c4tb00168k] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Khan MKI, Maan AA, Schutyser M, Schroën K, Boom R. Electrospraying of water in oil emulsions for thin film coating. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Velickova E, Winkelhausen E, Kuzmanova S, Moldão-Martins M, Alves VD. Characterization of multilayered and composite edible films from chitosan and beeswax. FOOD SCI TECHNOL INT 2013; 21:83-93. [DOI: 10.1177/1082013213511807] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chitosan-based edible films were prepared and subjected to cross-linking reactions using sodium tripolyphosphate and/or to beeswax coating on both films interfaces. In addition, chitosan–beeswax emulsion-based films were produced. The goal of these modifications of the chitosan films was the improvement of their barrier to water vapor and to decrease their affinity to liquid water maintaining or improving the mechanical and optical properties of the original chitosan films. The cross-linking with tripolyphosphate decreased both the water vapor permeability and the water absorption capacity to about 55% and 50% of that of the original chitosan films, respectively. However, there was an increase in the films stiffness, revealed by the increased Young modulus from 42 kPa up to 336 kPa. The multilayered wax–chitosan–wax films exhibited a similar improvement of the barrier properties to water vapor, with the advantage of maintaining the mechanical properties of the original chitosan films. However, these wax-coated films showed a higher water absorption capacity, which is believed to be a consequence of water entry into small pores between the film and the wax layers. Regarding the film samples subjected to cross-linking and further coating with beeswax, a similar behavior as the uncoated cross-linked films was observed. The emulsion-based composite films were characterized by a substantial decrease of the water vapor permeability (40%), along with a decrease in their stiffness. Regarding the optical properties, all films presented a yellowish color with similar values of lightness, chroma, and hue.
Collapse
Affiliation(s)
- Elena Velickova
- Department of Food Technology and Biotechnology, University SS.Cyril and Methodius, Republic of Macedonia
| | - Eleonora Winkelhausen
- Department of Food Technology and Biotechnology, University SS.Cyril and Methodius, Republic of Macedonia
| | - Slobodanka Kuzmanova
- Department of Food Technology and Biotechnology, University SS.Cyril and Methodius, Republic of Macedonia
| | - Margarida Moldão-Martins
- CEER–Biosystems Engineering, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Vitor D Alves
- CEER–Biosystems Engineering, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
28
|
Sun Q, Sun C, Xiong L. Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. Carbohydr Polym 2013; 98:630-7. [PMID: 23987392 DOI: 10.1016/j.carbpol.2013.06.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022]
Abstract
Mechanical, barrier and morphological properties of edible films based on blends of Pea starch (PS) and Peanut protein isolate (PPI) plasticized with glycerol (30%, w/w) were investigated. As PPI ratio in PS/PPI blends increased, the thickness of films decreased, the opacity slightly elevated and color intensified. The addition of PPI to the PS film significantly reduced tensile strength from 5.44 MPa to 3.06 MPa, but increased elongation from 28.56% to 98.12% with the incorporation of PPI into PS at 50% level. Film solubility value fell from 22.31% to 9.78% upon the incorporation of PPI ranged from 0 to 50% level. When PPI was added into PS film at 40% level, the WVP and WVTR of the films markedly dropped from 11.18% to 4.19% and 6.16 to 1.95%, respectively. Scanning electron microscopy (SEM) of the surface of films showed that many swollen starch granules were presented in the 100% PS film, while 100% PPI film was observed to have rougher surfaces with presence of pores or cavities. The PS/PPI blend films upon the incorporation of PPI at 20% and 50% level were not homogeneous. However, the smoother film surface was observed in PS/PPI blend films with the addition of PPI at 40% level. SEM image of the cross-sections of the films revealed that the 100% PS film showed a uniform and compact matrix without disruption, and pore formation and 100% PPI film displayed a smooth structure. Rougher and flexible network was shown in blend film with the addition of PPI reaching 40% level.
Collapse
Affiliation(s)
- Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| | | | | |
Collapse
|