1
|
Yavuz B, Kondolot Solak E, Oktar C. Preparation of biocompatible microsphere-cryogel composite system and controlled release of mupirocin. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Burcu Yavuz
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Chemistry and Chemical Processing Technologies, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| | - Ceren Oktar
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Shao D, Gao Q, Sheng Y, Li S, Kong Y. Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose. Int J Biol Macromol 2022; 202:37-45. [PMID: 35033530 DOI: 10.1016/j.ijbiomac.2022.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
An intelligent drug delivery platform based on the hybrids of mesoporous silica nanoparticles (MSN), sodium hyaluronate (HA), chitosan (CS) and oxidized sodium carboxymethyl cellulose (oxCMC) is developed, which can be used for dual-responsive dual-drug delivery. Hydrophilic cytarabine (Cyt) is first loaded into the mesopores of the aminated MSN (NH2-MSN), which is encapsulated by the hydrogel of HA and cystamine (Cys) crosslinked via amidation. The Cyt encapsulated hydrogel which is denoted as Cyt/NH2-MSN/HA is co-encapsulated with hydrophobic methotrexate (MTX) into the hydrogel of CS and oxCMC resulted from Schiff base reaction. Since the acylhydrazone bonds (-HC=N-) between CS and oxCMC are sensitive to pH and the disulfide bonds (-S-S-) in Cys are sensitive to glutathione (GSH), the resultant dual-drug encapsulated hydrogel, denoted as Cyt/NH2-MSN/HA/MTX/CS/oxCMC, can be used for dual-responsive (pH and GSH) drug delivery. The results of cell viability demonstrate that the developed dual-drug encapsulated hydrogel has significantly higher efficacy of chemotherapy than that of single-drug (MTX or Cyt) encapsulated hydrogel.
Collapse
Affiliation(s)
- Dan Shao
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiang Gao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 518000, China.
| | - Yanshan Sheng
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shangji Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Singh AK, Malviya R, Rao GSNK. Locust Bean Gum: Processing, Properties and Food Applications. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:93-102. [PMID: 36345241 DOI: 10.2174/2772574x14666221107104357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Locust bean gum is derived from the seed endosperm of the Ceratonia siliqua carob tree and is known as locust bean or carob gum. Food, medicines, paper, textile, oil drilling, and cosmetic sectors all use it as an ingredient. Hydrogen bonding with water molecules makes locust bean gum useful in industrial settings. In addition, its dietary fibre activity helps regulate numerous health issues, including diabetes, bowel motions, heart disease and colon cancer. Locust bean gum production, processing, composition, characteristics, culinary applications, and health advantages are the subject of this article.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | | |
Collapse
|
4
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
5
|
|
6
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
7
|
Li W, Zhao K, Chen X, Li Y. Dielectric Analysis of Microcapsule-Immobilized Composite Capsules Suspension: Substances Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:966-971. [PMID: 31941280 DOI: 10.1021/acs.langmuir.9b03539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dielectric spectroscopy has unique advantages in monitoring drug release. In this work, a dielectric measurement was carried out on the release of the substances of microcapsule-immobilized composite capsules, which were fabricated by encapsulating the Perinereis aibuhitensis extract-loaded gum Arabic/gelatin microcapsules (PaE: GA/GE-MCs) in calcium alginate hydrogel (PaE: CA/GA/GE-CCs). We established the dielectric model of PaE: CA/GA/GE-CCs and got in-depth information on the systems. There are two relaxations in the dielectric spectroscopy, both of which are caused by interfacial polarization. The relaxation mechanisms correspond to the interfacial polarization of the PaE-loading core/calcium alginate shell interface and the calcium alginate shell/solution interface, respectively. Besides, the swelling of composite capsules and substance migration in the composite capsules were observed by analyzing phase parameters. Finally, the characteristic release of calcium alginate composite capsules was confirmed, and the substance release mechanism of composite capsules, namely, the swelling-diffusion mechanism, was obtained.
Collapse
Affiliation(s)
- Wantong Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Kongshuang Zhao
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Xiguang Chen
- Biochemistry and Biomaterial Key Laboratory of Shandong Colleges and Universities, College of Marine Life Science , Ocean University of China , Yushan Road , Qingdao , Shandong 266003 , China
| | - Yang Li
- Biochemistry and Biomaterial Key Laboratory of Shandong Colleges and Universities, College of Marine Life Science , Ocean University of China , Yushan Road , Qingdao , Shandong 266003 , China
| |
Collapse
|
8
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Pettinelli N, Rodríguez-Llamazares S, Farrag Y, Bouza R, Barral L, Feijoo-Bandín S, Lago F. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int J Biol Macromol 2019; 146:110-118. [PMID: 31881300 DOI: 10.1016/j.ijbiomac.2019.12.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
Abstract
A novel composite hydrogel was prepared as a dual drug delivery carrier. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles were prepared to encapsulate simultaneously ketoprofen and mupirocin, as hydrophobic drug models. These microparticles were embedded in a physically crosslinked hydrogel of κ-carrageenan/locust bean gum. This composite hydrogel showed for both drugs a slower release than the obtained release from microparticles and hydrogel separately. The release of both drugs was observed during a period of 7 days at 37 °C. Different kinetic models were analyzed and the results indicated the best fitting to a Higuchi model suggesting that the release was mostly controlled by diffusion. Also, the drug loaded microparticles were spherical with average mean particle size of 1.0 μm, mesoporous, and distributed homogeneously in the hydrogel. The composite hydrogel showed a thermosensitive swelling behavior reaching 183% of swelling ratio at 37 °C. The composite hydrogel showed the elastic component to be higher than the viscous component, indicating characteristics of a strong hydrogel. The biocompatibility was evaluated with in vitro cytotoxicity assays and the results indicated that this composite hydrogel could be considered as a potential biomaterial for dual drug delivery, mainly for wound healing applications.
Collapse
Affiliation(s)
- Natalia Pettinelli
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepcion, Chile
| | - Yousof Farrag
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain.
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Sandra Feijoo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
10
|
Zhou X, Wu K, Long R, Kankala RK, Wang S, Liu Y. Preparation of a MVL-Ca-Alg/CS MEMs system with add-on effect for type 2 diabetes treatment. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1383249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xia Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Kejing Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
11
|
Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules 2017; 18:316-330. [DOI: 10.1021/acs.biomac.6b01604] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sytze J. Buwalda
- Institute
of Biomolecules Max Mousseron, Department of Artificial Biopolymers,
Faculty of Pharmacy, UMR 5247, CNRS-University of Montpellier-ENSCM, Montpellier, France
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Liu G, Zhou H, Wu H, Chen R, Guo S. Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1808-1823. [DOI: 10.1080/09205063.2016.1237452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Hongxun Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Djekic L, Krajišnik D, Mićic Z, Čalija B. Formulation and physicochemical characterization of hydrogels with 18β-glycyrrhetinic acid/phospholipid complex phytosomes. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Kim Y, Sah H. How to circumvent untoward drug crystallization during emulsion-templated microencapsulation process. J Appl Polym Sci 2016. [DOI: 10.1002/app.43768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuyoung Kim
- Department of Pharmaceutical Sciences; College of Pharmacy; Ewha Womans University; 52 Ewhayeodae-Gil, Sedaemun-Gu Seoul 120-750 Republic of Korea
| | - Hongkee Sah
- Department of Pharmaceutical Sciences; College of Pharmacy; Ewha Womans University; 52 Ewhayeodae-Gil, Sedaemun-Gu Seoul 120-750 Republic of Korea
| |
Collapse
|
15
|
Salehi R, Rasouli S, Hamishehkar H. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm 2015; 487:274-84. [DOI: 10.1016/j.ijpharm.2015.04.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022]
|
16
|
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. ACS NANO 2015; 9:4686-97. [PMID: 25938172 DOI: 10.1021/acsnano.5b01433] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.
Collapse
Affiliation(s)
- Sonia Merino
- †Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Cristina Martín
- †Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | - Maurizio Prato
- §Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Ester Vázquez
- †Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
17
|
Feng S, Lu F, Wang Y, Suo J. Comparison of the degradation and release behaviors of poly(lactide-co-glycolide)-methoxypoly(ethylene glycol) microspheres prepared with single- and double-emulsion evaporation methods. J Appl Polym Sci 2015. [DOI: 10.1002/app.41943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuibin Feng
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Feng Lu
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Yan Wang
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| | - Jinping Suo
- State Key Laboratory of Material Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology; Wuhan 430074 People's Republic of China
| |
Collapse
|
18
|
Xu S, Wang W, Li X, Liu J, Dong A, Deng L. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency. Eur J Pharm Sci 2014; 62:267-73. [DOI: 10.1016/j.ejps.2014.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022]
|
19
|
Liu T, Wu T, Liu H, Ke B, Huang H, Jiang Z, Xie M. Ultraviolet-crosslinked hydrogel sustained-release hydrophobic antibiotics with long-term antibacterial activity and limited cytotoxicity. J Appl Polym Sci 2014. [DOI: 10.1002/app.40438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tao Liu
- Department of Otolaryngology; Zhujiang Hospital, Southern Medical University; Guangzhou 510282 People's Republic of China
| | - Ting Wu
- Department of Light Chemical Engineering; Guangdong Polytechnic; Foshan 528041 People's Republic of China
| | - Hongxi Liu
- Department of Light Chemical Engineering; Guangdong Polytechnic; Foshan 528041 People's Republic of China
| | - Bo Ke
- JiangXi Key Laboratory of Hematological Oncology and Cell Biology; Jiangxi Provincil People's Hospital; Nanchang 330006 People's Republic of China
| | - Hongxing Huang
- Department of Microbiology and Immunology; Medical School of Jinan University; Guangzhou 510632 People's Republic of China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology; Medical School of Jinan University; Guangzhou 510632 People's Republic of China
| | - Mingqiang Xie
- Department of Otolaryngology; Zhujiang Hospital, Southern Medical University; Guangzhou 510282 People's Republic of China
| |
Collapse
|
20
|
Saleem Q, Zhang Z, Gradinaru CC, Macdonald PM. Liposome-coated hydrogel spheres: delivery vehicles with tandem release from distinct compartments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14603-14612. [PMID: 24156402 DOI: 10.1021/la402796k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have fabricated unilamellar lipid bilayer VESicle-COated hydrogel spheres (VESCOgels) by carbodiimide-mediated coupling of liposomes bearing surface amines to core-shell hydrogel spheres bearing surface carboxyls. The amine-containing moiety, 3-O (2-aminoethoxyethyloxyethyl)carbamyl cholesterol (AECHO), was incorporated into large unilamellar vesicles (LUVs), diameter ∼100 nm, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The hydrogel, diameter ∼ 1 μm, consisted of a core of poly(N-isopropyl acrylamide) (pNIPAM) and a shell of p(NIPAM-co-acrylic acid (AA)). Activation of these surface-displayed carboxyls with N-hydroxysuccinimidyl (NHS) esters permitted amine coupling upon addition of AECHO-containing POPC LUVs. Bilayer integrity of the hydrogel-bound LUVs was maintained, and fusion of LUVs did not occur. Fluorescence assays of the release of cobalt-calcein trapped within hydrogel-bound LUVs and of sodium fluorescein trapped within the hydrogel itself showed that each compartment retained its distinct release attributes: fast release from the microgel and slow release from the LUVs. It is envisioned that VESCOgels will be useful, therefore, in applications requiring temporally controlled delivery of distinct drugs.
Collapse
Affiliation(s)
- Qasim Saleem
- Department of Chemistry and ‡Department of Physics, University of Toronto , Toronto, Ontario, Canada
| | | | | | | |
Collapse
|