1
|
Galstyan V, D'Angelo P, Tarabella G, Vurro D, Djenizian T. High versatility of polyethylene terephthalate (PET) waste for the development of batteries, biosensing and gas sensing devices. CHEMOSPHERE 2024; 359:142314. [PMID: 38735489 DOI: 10.1016/j.chemosphere.2024.142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Continuously growing adoption of electronic devices in energy storage, human health and environmental monitoring systems increases demand for cost-effective, lightweight, comfortable, and highly efficient functional structures. In this regard, the recycling and reuse of polyethylene terephthalate (PET) waste in the aforementioned fields due to its excellent mechanical properties and chemical resistance is an effective solution to reduce plastic waste. Herein, we review recent advances in synthesis procedures and research studies on the integration of PET into energy storage (Li-ion batteries) and the detection of gaseous and biological species. The operating principles of such systems are described and the role of recycled PET for various types of architectures is discussed. Modifying the composition, crystallinity, surface porosity, and polar surface functional groups of PET are important factors for tuning its features as the active or substrate material in biological and gas sensors. The findings indicate that conceptually new pathways to the study are opened up for the effective application of recycled PET in the design of Li-ion batteries, as well as biochemical and catalytic detection systems. The current challenges in these fields are also presented with perspectives on the opportunities that may enable a circular economy in PET use.
Collapse
Affiliation(s)
- Vardan Galstyan
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy; Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy.
| | - Pasquale D'Angelo
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Davide Vurro
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Thierry Djenizian
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France; Al-Farabi Kazakh National University, Center of Physical-Chemical Methods of Research and Analysis, Tole bi str., 96A, Almaty, Kazakhstan
| |
Collapse
|
2
|
Cross-linked bio-based hydrogels generated from solutions derived from the deconstruction of sisal fibers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Barbosa MC, Razzino CDA, Stocco TD, Santana MDV, Ghosh A, Pereira LF, Tierra-Criollo CJ, Lobo AO. Production of rGO-Based Electrospinning Nanocomposites Incorporated in Recycled PET as an Alternative Dry Electrode. Polymers (Basel) 2022; 14:polym14204288. [PMID: 36297865 PMCID: PMC9607334 DOI: 10.3390/polym14204288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
In this work, Coca-Cola® bottles were reused as a PET polymer (rPET) source to produce electrospun polymeric nanofibers. The nanofibers were electrospun from polymer solutions with different concentrations of reduced graphene oxide (rGO) incorporated for applications in somatosensory electrical stimulation. The rPET/rGO nanofiber mats were characterized by SEM, TEM, Raman, DSC, TGA, and DMA and the results showed that the incorporation of rGO in electrospun rPET fibers produced rPET/rGO composites. The rPET/rGO composites were then evaluated for possible application as dry electrodes. Moreover, with a preliminary test of numerous volunteers, the rPET/rGO dry electrode showed promising results. The rPET/rGO electrodes showed good performance and applicability to make dry electrodes, and these have applications as dry or wearable electrodes to produce electrochemical sensors.
Collapse
Affiliation(s)
- Michelle Chizzolini Barbosa
- Research and Development Institute, University of Vale do Paraiba—UNIVAP, São Jose dos Campos 12244-000, SP, Brazil
| | - Claudia do Amaral Razzino
- Research and Development Institute, University of Vale do Paraiba—UNIVAP, São Jose dos Campos 12244-000, SP, Brazil
| | - Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brasil University, São Paulo 08230-030, SP, Brazil
| | - Moisés das Virgens Santana
- Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Anupama Ghosh
- Department of Chemical and Materials Engineering—DEQM, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22453-900, RJ, Brazil
| | - Luiz Fernando Pereira
- Biomedical Engineering Program-PEB, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Carlos Julio Tierra-Criollo
- Biomedical Engineering Program-PEB, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
- Correspondence: (C.J.T.-C.); (A.O.L.)
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina 64049-550, PI, Brazil
- Correspondence: (C.J.T.-C.); (A.O.L.)
| |
Collapse
|
4
|
Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. MATERIALS 2021; 14:ma14164694. [PMID: 34443216 PMCID: PMC8401388 DOI: 10.3390/ma14164694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.
Collapse
|
5
|
Preparation of Sawdust-Filled Recycled-PET Composites via Solid-State Compounding. Processes (Basel) 2020. [DOI: 10.3390/pr8010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, consumer markets have shown great interest in sustainable products. Considerable research efforts are headed towards developing biodegradable and recyclable polymers and composites. In this study, the fabrication of a wood–plastic composite (WPC) via solid state compounding has been examined. Polyethylene terephthalate (PET) and wood sawdust waste as major components of waste and challenging materials for the manufacturing of WPCs have been explored. Furthermore, the addition of poly(ε-caprolactone) as a biodegradable plasticizing agent was investigated. Composite powders were prepared by cryogenic solid-state milling (cryomilling) according to a statistical mixture design. Mechanical and water absorption properties were inspected on film samples obtained by hot pressing. Different formulations resulted in a variety of colors, textures, water interactions and mechanical properties. A sawdust content of approximately 25 vol.% was optimal for the best combination of properties. The results indicated that cryomilling is technically advantageous in the production of WPCs.
Collapse
|
6
|
Montava-Jordà S, Torres-Giner S, Ferrandiz-Bou S, Quiles-Carrillo L, Montanes N. Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. Int J Mol Sci 2019; 20:E1378. [PMID: 30893806 PMCID: PMC6471284 DOI: 10.3390/ijms20061378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022] Open
Abstract
This study presents the valorization of cotton waste from the textile industry for the development of sustainable and cost-competitive biopolymer composites. The as-received linter of recycled cotton was first chopped to obtain short fibers, called recycled cotton fibers (RCFs), which were thereafter melt-compounded in a twin-screw extruder with partially bio-based polyethylene terephthalate (bio-PET) and shaped into pieces by injection molding. It was observed that the incorporation of RCF, in the 1⁻10 wt% range, successfully increased rigidity and hardness of bio-PET. However, particularly at the highest fiber contents, the ductility and toughness of the pieces were considerably impaired due to the poor interfacial adhesion of the fibers to the biopolyester matrix. Interestingly, RCF acted as an effective nucleating agent for the bio-PET crystallization and it also increased thermal resistance. In addition, the overall dimensional stability of the pieces was improved as a function of the fiber loading. Therefore, bio-PET pieces containing 3⁻5 wt% RCF presented very balanced properties in terms of mechanical strength, toughness, and thermal resistance. The resultant biopolymer composite pieces can be of interest in rigid food packaging and related applications, contributing positively to the optimization of the integrated biorefinery system design and also to the valorization of textile wastes.
Collapse
Affiliation(s)
- Sergi Montava-Jordà
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| | - Santiago Ferrandiz-Bou
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Nestor Montanes
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| |
Collapse
|
7
|
Passos de Oliveira Santos R, Fernanda Rossi P, Ramos LA, Frollini E. Renewable Resources and a Recycled Polymer as Raw Materials: Mats from Electrospinning of Lignocellulosic Biomass and PET Solutions. Polymers (Basel) 2018; 10:E538. [PMID: 30966572 PMCID: PMC6415374 DOI: 10.3390/polym10050538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022] Open
Abstract
Interest in the use of renewable raw materials in the preparation of materials has been growing uninterruptedly in recent decades. The aim of this strategy is to offer alternatives to the use of fossil fuel-based raw materials and to meet the demand for materials that are less detrimental to the environment after disposal. In this context, several studies have been carried out on the use of lignocellulosic biomass and its main components (cellulose, hemicelluloses, and lignin) as raw materials for polymeric materials. Lignocellulosic fibers have a high content of cellulose, but there has been a notable lack of investigations on application of the electrospinning technique for solutions prepared from raw lignocellulosic biomass, even though the presence of cellulose favors the alignment of the fiber chains during electrospinning. In this investigation, ultrathin (submicrometric) and nanoscale aligned fibers were successfully prepared via electrospinning (room temperature) of solutions prepared with different contents of lignocellulosic sisal fibers combined with recycled poly(ethylene terephthalate) (PET) using trifluoroacetic acid (TFA) as solvent. The "macro" fibers were deconstructed by the action of TFA, resulting in solutions containing their constituents, i.e., cellulose, hemicelluloses, and lignin, in addition to PET. The "macro" sisal fibers were reconstructed at the nanometer and submicrometric scale from these solutions. The SEM micrographs of the mats containing the components of sisal showed distinct fiber networks, likely due to differences in the solubility of these components in TFA and in their dielectric constants. The mechanical properties of the mats (dynamic mechanical analysis, DMA, and tensile properties) were evaluated with the samples positioned both in the direction (dir) of and in opposition (op) to the alignment of the nano and ultrathin fibers, which can be considered a novelty in the analysis of this type of material. DMA showed superior values of storage modulus (E' at 30 °C) for the mats characterized in the preferential direction of fiber alignment. For example, for mats obtained from solutions prepared from a 0.4 ratio of sisal fibers/PET, Sisal/PET0.40dir presented a high E' value of 765 MPa compared to Sisal/PET0.40op that presented an E' value of 88.4 MPa. The fiber alignment did not influence the Tg values (from tan δ peak) of electrospun mats with the same compositions, as they presented similar values for this property. The tensile properties of the electrospun mats were significantly impacted by the alignment of the fibers: e.g., Sisal/PET0.40dir presented a high tensile strength value of 15.72 MPa, and Sisal/PET0.40op presented a value of approximately 2.5 MPa. An opposite trend was observed regarding the values of elongation at break for these materials. Other properties of the mats are also discussed; such as the index of fiber alignment, average porosity, and surface contact angle. To our knowledge, this is the first time that the influence of fiber alignment on the properties of electrospun mats based on untreated lignocellulosic biomass combined with a recycled polymer, such as PET, has been evaluated. The mats obtained in this study have potential for diversified applications, such as reinforcement for polymeric matrices in nanocomposites, membranes for filtration, and support for enzymes, wherein the fiber alignment, together with other evaluated properties, can impact their effectiveness in these applications.
Collapse
Affiliation(s)
- Rachel Passos de Oliveira Santos
- Macromolecular Materials and Lignocellulosic Fibers Group, Center of Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil.
| | - Patrícia Fernanda Rossi
- Macromolecular Materials and Lignocellulosic Fibers Group, Center of Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil.
| | - Luiz Antônio Ramos
- Macromolecular Materials and Lignocellulosic Fibers Group, Center of Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil.
| | - Elisabete Frollini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center of Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Chen J, Nie X, Jiang J. Synthesis and application of a novel cardanol-based plasticizer as secondary or main plasticizer for poly(vinyl chloride). POLYM INT 2018. [DOI: 10.1002/pi.5503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Chen
- Institute of Chemical Industry of Forestry Products; Chinese Academy of Forestry; Nanjing Jiangsu China
| | - Xiaoan Nie
- Institute of Chemical Industry of Forestry Products; Chinese Academy of Forestry; Nanjing Jiangsu China
- Institute of New Technology of Forestry; Chinese Academy of Forestry; Beijing China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forestry Products; Chinese Academy of Forestry; Nanjing Jiangsu China
- Institute of New Technology of Forestry; Chinese Academy of Forestry; Beijing China
| |
Collapse
|
9
|
Moliner C, Badia JD, Bosio B, Arato E, Kittikorn T, Strömberg E, Teruel-Juanes R, Ek M, Karlsson S, Ribes-Greus A. Thermal and thermo-oxidative stability and kinetics of decomposition of PHBV/sisal composites. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1384921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C. Moliner
- Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Genova, Italy
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
| | - J. D. Badia
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
- Department of Chemical Engineering, School of Engineering, Universitat de València (UV), Burjassot, Spain
| | - B. Bosio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Genova, Italy
| | - E. Arato
- Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Genova, Italy
| | - T. Kittikorn
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
- Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - E. Strömberg
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - R. Teruel-Juanes
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
| | - M. Ek
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - S. Karlsson
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - A. Ribes-Greus
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
| |
Collapse
|
10
|
Chen J, Liu Z, Li X, Liu P, Jiang J, Nie X. Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride). Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Morreale M, Liga A, Mistretta MC, Ascione L, Mantia FPL. Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour. MATERIALS 2015; 8:7536-7548. [PMID: 28793656 PMCID: PMC5458878 DOI: 10.3390/ma8115406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/23/2022]
Abstract
The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA), differential scanning calorimetry (DSC) and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.
Collapse
Affiliation(s)
- Marco Morreale
- Facoltà di Ingegneria e Architettura, Università degli studi di Enna "Kore", Cittadella Universitaria, Enna 94100, Italy.
| | - Antonio Liga
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Maria Chiara Mistretta
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy.
| | - Laura Ascione
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy.
| | - Francesco Paolo La Mantia
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy.
| |
Collapse
|
12
|
Acevedo-Fani A, Salvia-Trujillo L, Soliva-Fortuny R, Martín-Belloso O. Modulating Biopolymer Electrical Charge to Optimize the Assembly of Edible Multilayer Nanofilms by the Layer-by-Layer Technique. Biomacromolecules 2015; 16:2895-903. [DOI: 10.1021/acs.biomac.5b00821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandra Acevedo-Fani
- Department of Food Technology,
Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology,
Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology,
Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology,
Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
13
|
Rodrigues BVM, Ramires EC, Santos RPO, Frollini E. Ultrathin and nanofibers via room temperature electrospinning from trifluoroacetic acid solutions of untreated lignocellulosic sisal fiber or sisal pulp. J Appl Polym Sci 2015. [DOI: 10.1002/app.41826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruno V. M. Rodrigues
- Macromolecular Materials and Lignocellulosic Fibers Group; Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo; 13560-970 São Carlos São Paulo Brazil
| | - Elaine C. Ramires
- Macromolecular Materials and Lignocellulosic Fibers Group; Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo; 13560-970 São Carlos São Paulo Brazil
| | - Rachel P. O. Santos
- Macromolecular Materials and Lignocellulosic Fibers Group; Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo; 13560-970 São Carlos São Paulo Brazil
| | - Elisabete Frollini
- Macromolecular Materials and Lignocellulosic Fibers Group; Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo; 13560-970 São Carlos São Paulo Brazil
| |
Collapse
|