1
|
Hossain MK, Ahmed T, Bhusal P, Subedi RK, Salahshoori I, Soltani M, Hassanzadeganroudsari M. Microneedle Systems for Vaccine Delivery: the story so far. Expert Rev Vaccines 2021; 19:1153-1166. [PMID: 33427523 DOI: 10.1080/14760584.2020.1874928] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Vaccine delivery via a microneedle (MN) system has been identified as a potential alternative to conventional vaccine delivery. MN can be self-administered, is pain-free and is capable of producing superior immunogenicity. Over the last few decades, significant research has been carried out in this area, and this review aims to provide a comprehensive picture on the progress of this delivery platform. AREAS COVERED This review highlights the potential role of skin as a vaccine delivery route using a microneedle system, examines recent advancements in microneedle fabrication techniques, and provides an update on potential preclinical and clinical studies on vaccine delivery through microneedle systems against various infectious diseases. Articles for the review study were searched electronically in PubMed, Google, Google Scholar, and Science Direct using specific keywords to cover the scope of the article. The advanced search strategy was employed to identify the most relevant articles. EXPERT OPINION A significant number of MN mediated vaccine candidates have shown promising results in preclinical and clinical trials. The recent emergence of cleanroom free, 3D or additive manufacturing of MN systems and stability, together with the dose-sparing capacity of the Nanopatch® system, have made this platform, commercially, highly lucrative.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University , Melbourne, VIC, Australia
| | - Taksim Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Prabhat Bhusal
- School of Pharmacy, University of Otago , Dunedin New Zealand
| | | | - Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University , Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology , Tehran, Iran.,Department of Electrical and Computer Engineering, Faculty of Engineering, School of Optometry and Vision Science, Faculty of Science, University of Waterloo , Waterloo, Ontario, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo , Waterloo, Ontario, Canada.,Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology , Tehran, Iran
| | - Majid Hassanzadeganroudsari
- Institute for Health and Sport, Victoria University , Melbourne, VIC, Australia.,Department of Chemical Engineering, Science and Research Branch, Islamic Azad University , Tehran, Iran
| |
Collapse
|
2
|
Mezhuev YO, Sten’kina MV, Osadchenko SV, Shtil’man MI. Production and Kinetics of Swelling in Water of Biocompatible Branched Polyvinyl Alcohol Films. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220020032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Effects of Heat Treatment and Tea Polyphenols on the Structure and Properties of Polyvinyl Alcohol Nanofiber Films for Food Packaging. COATINGS 2020. [DOI: 10.3390/coatings10010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, biodegradable polyvinyl alcohol (PVA) was blended with natural antioxidant tea polyphenols (TPs) to produce PVA/TP nanofiber films by electrospinning. The effects of heat treatment and TP incorporation on the structural and physical properties of the films were then evaluated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) revealed that the PVA/TP nanofiber film has a more compact structure and better morphology than PVA alone. In addition, the water resistance was enhanced, and the formation of hydrogen bonds between the TP and PVA molecules increased via the heat treatment. Furthermore, the mechanical, antioxygenic, and antibacterial properties of the nanofiber films were significantly improved (P < 0.05) owing to the incorporation of TP. In particular, when the mass ratio of the PVA/TP was 7:3, the elongation at break (EAB) of the film increased to 105.24% ± 2.87%, and the antioxidant value reached a maximum at 64.83% ± 5.21%. In addition, the antibacterial activity of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) increased to the maximum levels of 82.48% ± 2.12% and 86.25% ± 2.32%, respectively. In summary, our study produced a functional food packaging material that includes preservation with an acceptable bioactivity, ability to keep food fresh, and biodegradability.
Collapse
|
4
|
Oliveira AS, Seidi O, Ribeiro N, Colaço R, Serro AP. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3413. [PMID: 31635284 PMCID: PMC6829290 DOI: 10.3390/ma12203413] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Designing materials for cartilage replacement raises several challenges due to the complexity of the natural tissue and its unique tribomechanical properties. Poly(vinyl alcohol) (PVA) hydrogels have been explored for such purpose since they are biocompatible, present high chemical stability, and their properties may be tailored through different strategies. In this work, the influence of preparation conditions of PVA hydrogels on its morphology, water absorption capacity, thermotropic behavior, mechanical properties, and tribological performance was evaluated and compared with those of human cartilage (HC). The hydrogels were obtained by cast-drying (CD) and freeze-thawing (FT), in various conditions. It was found that the method of preparation of the PVA hydrogels critically affects their microstructure and performance. CD gels presented a denser structure, absorbed less water, were stiffer, dissipated less energy, and withstood higher loads than FT gels. Moreover, they led to friction coefficients against stainless steel comparable with those of HC. Overall, CD hydrogels had a closer performance to natural HC, when compared to FT ones.
Collapse
Affiliation(s)
- Andreia Sofia Oliveira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Oumar Seidi
- Institut Supérieur des BioSciences (ISBS), École Supérieure d'Ingénieurs de Paris-Est Créteil, 71 Rue Saint-Simon, 94000 Créteil, France.
| | - Nuno Ribeiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Departamento de Ortopedia, Hospital Lusíadas Lisboa, R. Abílio Mendes 12, 1500-458 Lisboa, Portugal.
| | - Rogério Colaço
- Instituto de Engenharia Mecânica Instituto Superior Técnico (IDMEC)-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
5
|
Evaluation of lubrication properties of hydrogel artificial cartilage materials for joint prosthesis. BIOSURFACE AND BIOTRIBOLOGY 2016. [DOI: 10.1016/j.bsbt.2016.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|