1
|
Yadav N, Roy D, Misra SK. Intrinsically Antibacterial Carbon Nanoparticles Optimally Entangle into Polymeric Films to Produce Composite Packaging. ACS OMEGA 2024; 9:45104-45116. [PMID: 39554432 PMCID: PMC11561620 DOI: 10.1021/acsomega.4c05732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/19/2024]
Abstract
The quality of food, pharmaceutical, or sustainability products is generally maintained through optimal storage conditions or the use of packaging films. Herein, an intrinsically antibacterial and improvised polylactic acid-based film (hpp-PLA-film) has been produced by introducing a microwave-assisted synthesis process of carbon nanoparticles produced from hemp fibers (hf-CNPs). These high-performance packaging (hpp-PLA) films were produced with different percentages of loaded hf-CNPs, i.e., 0.05 and 0.5% (w/w), called hpp-PLA-0.05-film and hpp-PLA-0.5-film, respectively. The chemical entangling of hf-CNPs in PLA films was probed by various physicochemical, thermal, and mechanical characterization methods. The antibacterial properties of hpp-PLA-films could inhibit bacterial growth and outperform kanamycin, at least for longer time periods. Overall, it could be established that the produced hpp-PLA-0.05-film not only was better in mechanical, antibacterial, dissolution, and physical impact sustainability but also had biodegradation properties and may be a better alternative for regular PLA-based packaging composites in the near future.
Collapse
Affiliation(s)
- Neha Yadav
- Department
of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP 208016, India
- Directorate
of Nanomaterials, Defence Materials &
Stores Research & Development Establishment (DMSRDE), Kanpur, UP 208013, India
| | - Debmalya Roy
- Directorate
of Nanomaterials, Defence Materials &
Stores Research & Development Establishment (DMSRDE), Kanpur, UP 208013, India
| | - Santosh K. Misra
- Department
of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP 208016, India
- The
Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, UP 208016, India
| |
Collapse
|
2
|
Joseph DP, Rajchakit U, Pilkington LI, Sarojini V, Barker D. Antimicrobial fibres derived from aryl-diazonium conjugation of chitosan with Harakeke (Phormium tenax) and Hemp (Cannabis sativa) Hurd. Int J Biol Macromol 2024; 264:130840. [PMID: 38548496 DOI: 10.1016/j.ijbiomac.2024.130840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Surface functionalisation of natural materials to develop sustainable and environmentally friendly antimicrobial fibres has received great research interest in recent years. Herein, chitosan covalent conjugation via aryl-diazonium based chemistry onto Phormium tenax fibres (PTF) and hemp hurds (HH) was investigated. PTF are fibres derived from Harakeke/New Zealand flax, an indigenous and abundant plant source of leaf fibres, which served as an important 19th century export commodity of New Zealand. HH are obtained as a by-product from the hemp (Cannabis sativa) industry and find applications as traditional construction material, animal bedding, chemical absorbent, insulation, fireboard etc. This study reports aryl-diazonium covalent attachment of chitosan and PD13 (6-O-(3-(2-(N,N-dimethylamino)ethylamino)-2-hydroxypropyl)chitosan), a chitosan derivative with improved antibacterial activity, on to PTF and HH. The modification was confirmed using FTIR, XPS, SEM and water contact angle studies. Comparison of aryl-diazonium versus the use of succinic anhydride bridging for chitosan attachment was also investigated, with the diazonium method giving improved results. The treated PTF and HH fibres had good antibacterial activity against Staphylococcus aureus and this study contributes to the development of sustainable antibacterial fibres using bio-based materials.
Collapse
Affiliation(s)
- Delsa Pulickal Joseph
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
| | - Urawadee Rajchakit
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; Te Pūnaha Matatini, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
3
|
Suárez-Jacobo Á, Díaz Pacheco A, Bonales-Alatorre E, Castillo-Herrera GA, García-Fajardo JA. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023; 28:molecules28072895. [PMID: 37049659 PMCID: PMC10095677 DOI: 10.3390/molecules28072895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The Cannabis genus of plants has been widely used in different cultures for various purposes. It is separated into three main species: sativa, indica, and ruderalis. In ancient practices, the plant was used as a multipurpose crop and valued for its fiber, food, and medicinal uses. Since methodologies for the extraction, processing, and identification of components have become available, medical, and food applications have been increasing, allowing potential development in the pharmaceutical and healthy functional food industries. Although the growing legalization and adoption of cannabis for the treatment of diseases are key factors pushing the growth of its market, the biggest challenge is to obtain higher-quality products in a time- and cost-effective fashion, making the process of extraction and separation an essential step. Latin American countries exhibit great knowledge of extraction technologies; nevertheless, it is still necessary to verify whether production costs are economically profitable. In addition, there has been an increase in commercial cannabis products that may or may not be allowed, with or without quality fact sheets, which can pose health risks. Hence, legalization is mandatory and urgent for the rest of Latin American countries. In this article, the phytochemical compounds (cannabinoids, terpenes, and phenolic compounds), the current status of legalization, extraction techniques, and research advances in cannabis in Latin America are reviewed.
Collapse
Affiliation(s)
- Ángela Suárez-Jacobo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Tlaxcala 90000, Mexico
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Gustavo Adolfo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Jorge Alberto García-Fajardo
- Subsede Noreste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| |
Collapse
|
4
|
Pulikkalparambil H, Varghese SA, Chonhenchob V, Nampitch T, Jarupan L, Harnkarnsujarit N. Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications. Polymers (Basel) 2023; 15:1393. [PMID: 36987173 PMCID: PMC10059869 DOI: 10.3390/polym15061393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
Packaging is one of the major domains in the food processing industry that reduces waste and enhances product shelf life. Recently, research and development have focused on bioplastics and bioresources to combat environmental issues caused by the alarming growth of single-use plastic waste food packaging. The demand for natural fibres has recently increased because of their low cost, biodegradability and eco-friendliness. This article reviewed recent developments in natural fibre-based food packaging materials. The first part discusses the introduction of natural fibres in food packaging, with a focus on fibre source, composition and selection parameters, while the second part investigates the physical and chemical ways to modify natural fibres. Several plant-derived fibre materials have been utilised in food packaging as reinforcements, fillers and packaging matrices. Recent investigations developed and modified natural fibre (physical and chemical treatments) into packaging using casting, melt mixing, hot pressing, compression moulding, injection moulding, etc. These techniques majorly improved the strength of bio-based packaging for commercialisation. This review also identified the main research bottlenecks and future study areas were suggested.
Collapse
Affiliation(s)
- Harikrishnan Pulikkalparambil
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sandhya Alice Varghese
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Tarinee Nampitch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Lerpong Jarupan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Žitek T, Kotnik P, Makoter T, Postružnik V, Knez Ž, Knez Marevci M. Optimisation of the Green Process of Industrial Hemp-Preparation and Its Extract Characterisation. PLANTS (BASEL, SWITZERLAND) 2022; 11:1749. [PMID: 35807701 PMCID: PMC9269414 DOI: 10.3390/plants11131749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural medicines and products are becoming increasingly important in the pharmaceutical and food industries. The most important step in obtaining a natural remedy is the processing of the natural material. This study offers the separation of the industrial hemp plant into fractions by mechanical treatment, which has a significant impact on the selectivity of the obtained fractions. This study also offers a solution to reduce waste by fractionating industrial hemp, focusing on the fraction with the highest cannabinoid content (49.5% of CBD). The study confirmed the anticancer potential of the extract, which prevents further division of WM-266-4 melanoma cells at a concentration of 10-3 mg/mL. However, application of the extract (c = 10-3 mg/mL) to normal human epidermal melanocytes proved to be insignificant, as the metabolic activity of the cells was the same as in the control cell group.
Collapse
Affiliation(s)
- Taja Žitek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
| | - Petra Kotnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Teo Makoter
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Vesna Postružnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Maša Knez Marevci
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia; (T.Ž.); (P.K.); (V.P.); (Ž.K.)
| |
Collapse
|
6
|
Muangmeesri S, Li N, Georgouvelas D, Ouagne P, Placet V, Mathew AP, Samec JSM. Holistic Valorization of Hemp through Reductive Catalytic Fractionation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:17207-17213. [PMID: 34976442 PMCID: PMC8715730 DOI: 10.1021/acssuschemeng.1c06607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Indexed: 05/05/2023]
Abstract
Despite the increased use of hemp fiber, negligible attention has been given to upgrade the hemp hurd, which constitutes up to 70 wt % of the hemp stalk and is currently considered a low-value byproduct. In this work, valorization of hemp hurd was performed by reductive catalytic fractionation (RCF) in the presence of a metal catalyst. We found an unexpectedly high yield of monophenolic compounds (38.3 wt %) corresponding to above 95% of the theoretical maximum yield. The high yield is explained by both a thin cell wall and high S-lignin content. In addition, organosolv pulping was performed to generate a pulp that was bleached to produce dissolving-grade pulp suitable for textile fiber production (viscosity, 898 mL/g; ISO-brightness, 90.2%) and nanocellulose. Thus, we have demonstrated a novel value chain from a low-value side stream of hemp fiber manufacture that has the potential to increase textile fiber production with 100% yield and also give bio-oil for green chemicals.
Collapse
Affiliation(s)
| | - Ning Li
- Department
of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
- State
Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for
Clean Energy (DNL), Dalian Institute of
Chemical Physics (DICP), Dalian 116023, People’s Republic
of China
| | - Dimitrios Georgouvelas
- Department
of Materials and Environmental Chemistry, Stockholm University, 106
91 Stockholm, Sweden
| | - Pierre Ouagne
- Laboratoire
Génie de Production, Université
de Toulouse, ENIT, 65016 Tarbes, France
| | - Vincent Placet
- Department
of Applied Mechanics, Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, UFC/CNRS/ENSMM/UTBM, F-25000 Besançon, France
| | - Aji P. Mathew
- Department
of Materials and Environmental Chemistry, Stockholm University, 106
91 Stockholm, Sweden
| | - Joseph S. M. Samec
- Department
of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
8
|
Arif Y, Singh P, Bajguz A, Hayat S. Phytocannabinoids Biosynthesis in Angiosperms, Fungi, and Liverworts and Their Versatile Role. PLANTS (BASEL, SWITZERLAND) 2021; 10:1307. [PMID: 34203173 PMCID: PMC8309193 DOI: 10.3390/plants10071307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Phytocannabinoids are a structurally diverse class of bioactive naturally occurring compounds found in angiosperms, fungi, and liverworts and produced in several plant organs such as the flower and glandular trichrome of Cannabis sativa, the scales in Rhododendron, and oil bodies of liverworts such as Radula species; they show a diverse role in humans and plants. Moreover, phytocannabinoids are prenylated polyketides, i.e., terpenophenolics, which are derived from isoprenoid and fatty acid precursors. Additionally, targeted productions of active phytocannabinoids have beneficial properties via the genes involved and their expression in a heterologous host. Bioactive compounds show a remarkable non-hallucinogenic biological property that is determined by the variable nature of the side chain and prenyl group defined by the enzymes involved in their biosynthesis. Phytocannabinoids possess therapeutic, antibacterial, and antimicrobial properties; thus, they are used in treating several human diseases. This review gives the latest knowledge on their role in the amelioration of abiotic (heat, cold, and radiation) stress in plants. It also aims to provide synthetic and biotechnological approaches based on combinatorial biochemical and protein engineering to synthesize phytocannabinoids with enhanced properties.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (Y.A.); (P.S.); (S.H.)
| | - Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (Y.A.); (P.S.); (S.H.)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (Y.A.); (P.S.); (S.H.)
| |
Collapse
|
9
|
Žitek T, Leitgeb M, Golle A, Dariš B, Knez Ž, Knez Hrnčič M. The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules 2020; 25:E4992. [PMID: 33126621 PMCID: PMC7662229 DOI: 10.3390/molecules25214992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
This study presents an investigation of the anticancer and antimicrobial ability of a combination of ginger and cannabis extracts in different ratios (1:1, 7:3 and 3:7). Extracts were obtained using various methods (Soxhlet extractions, cold macerations, ultrasonic extractions and supercritical fluid extractions). The antioxidant activity and the presence of total phenols were measured in the extracts, and the effect of the application extracts in various concentrations (c = 50, 20, 10, 5, 1, 0.1, 0.01 mg/mL) on cells was investigated. Higher values of antioxidants were measured at the ratio where ginger was predominant, which is reflected in a higher concentration of total phenols. Depending on the polyphenol content, the extracts were most effective when prepared supercritically and ultrasonically. However, with respect to cell response, the ratio was shown to have no effect on inhibiting cancer cell division. The minimum concentration required to inhibit cancer cell growth was found to be 1 mg/mL. High-performance liquid chromatography (HPLC) analysis also confirmed the effectiveness of ultrasonic and supercritical fluid extraction, as their extracts reached higher cannabinoid contents. In both extractions, the cannabidiol (CBD) content was above 30% and the cannabidiolic acid (CBDA) content was above 45%. In the case of ultrasonic extraction, a higher quantity of cannabigerol (CBG) (5.75 ± 0.18) was detected, and in the case of supercritical fluid extraction, higher cannabichromene (CBC) (5.48 ± 0.13) content was detected, when compared to other extraction methods. The antimicrobial potential of extracts prepared with ultrasonic and supercritical extractions on three microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) was checked. Ginger and cannabis extract show better growth inhibition of microorganisms in cannabis-dominated ratios for gram-positive bacterium S. aureus, MIC = 9.38 mg/mL, for gram-negative bacterium E. coli, MIC > 37.5 mg/mL and for the C. albicans fungus MIC = 4.69 mg/mL. This suggests guidelines for further work: a 1: 1 ratio of ginger and hemp will be chosen in a combination with supercritical and ultrasonic extraction.
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, SI-2000 Maribor, Slovenia;
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia;
| | - Maša Knez Hrnčič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (T.Ž.); (M.L.); (Ž.K.)
| |
Collapse
|
10
|
Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. FRONTIERS IN PLANT SCIENCE 2016; 7:19. [PMID: 26870049 PMCID: PMC4740396 DOI: 10.3389/fpls.2016.00019] [Citation(s) in RCA: 721] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
Collapse
Affiliation(s)
- Christelle M. Andre
- Environmental Research and Innovation, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | | | | |
Collapse
|