1
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
2
|
Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1800. [PMID: 35445588 DOI: 10.1002/wnan.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Functional nanomaterials have been widely used in biomedical fields due to their good biocompatibility, excellent physicochemical properties, easy surface modification, and easy regulation of size and morphology. Functional nanomaterials for magnetic resonance imaging (MRI) can target specific sites in vivo and more easily detect disease-related specific biomarkers at the molecular and cellular levels than traditional contrast agents, achieving a broad application prospect in MRI. This review focuses on the basic principles of MRI, the classification, synthesis and surface modification methods of contrast agents, and their clinical applications to provide guidance for designing novel contrast agents and optimizing the contrast effect. Furthermore, the latest biomedical advances of functional nanomaterials in medical diagnosis and disease detection, disease treatment, the combination of diagnosis and treatment (theranostics), multi-model imaging and nanozyme are also summarized and discussed. Finally, the bright application prospects of functional nanomaterials in biomedicine are emphasized and the urgent need to achieve significant breakthroughs in the industrial transformation and the clinical translation is proposed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xingyu Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhaoji Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Tullio C, Salvioni L, Bellini M, Degrassi A, Fiandra L, D’Arienzo M, Garbujo S, Rotem R, Testa F, Prosperi D, Colombo M. Development of an Effective Tumor-Targeted Contrast Agent for Magnetic Resonance Imaging Based on Mn/H-Ferritin Nanocomplexes. ACS APPLIED BIO MATERIALS 2021; 4:7800-7810. [PMID: 34805780 PMCID: PMC8596607 DOI: 10.1021/acsabm.1c00724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most sophisticated diagnostic tools that is routinely used in clinical practice. Contrast agents (CAs) are commonly exploited to afford much clearer images of detectable organs and to reduce the risk of misdiagnosis caused by limited MRI sensitivity. Currently, only a few gadolinium-based CAs are approved for clinical use. Concerns about their toxicity remain, and their administration is approved only under strict controls. Here, we report the synthesis and validation of a manganese-based CA, namely, Mn@HFn-RT. Manganese is an endogenous paramagnetic metal able to produce a positive contrast like gadolinium, but it is thought to result in less toxicity for the human body. Mn ions were efficiently loaded inside the shell of a recombinant H-ferritin (HFn), which is selectively recognized by the majority of human cancer cells through their transferrin receptor 1. Mn@HFn-RT was characterized, showing excellent colloidal stability, superior relaxivity, and a good safety profile. In vitro experiments confirmed the ability of Mn@HFn-RT to efficiently and selectively target breast cancer cells. In vivo, Mn@HFn-RT allowed the direct detection of tumors by positive contrast enhancement in a breast cancer murine model, using very low metal dosages and exhibiting rapid clearance after diagnosis. Hence, Mn@HFn-RT is proposed as a promising CA candidate to be developed for MRI.
Collapse
Affiliation(s)
- Chiara Tullio
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Michela Bellini
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Anna Degrassi
- Preclinical
Development, Efficacy and Safety, Accelera
S.R.L.—NMS Group S.p.A., viale Pasteur 10, 20014 Nerviano, MI, Italy
| | - Luisa Fiandra
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Massimiliano D’Arienzo
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Stefania Garbujo
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Rany Rotem
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Filippo Testa
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Davide Prosperi
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Miriam Colombo
- NanoBioLab,
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
4
|
Miki K, Imaizumi N, Nogita K, Oe M, Mu H, Huo W, Harada H, Ohe K. MMP-2-Activatable Photoacoustic Tumor Imaging Probes Based on Al- and Si-Naphthalocyanines. Bioconjug Chem 2021; 32:1773-1781. [PMID: 34167292 DOI: 10.1021/acs.bioconjchem.1c00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme-activatable photoacoustic probes are powerful contrast agents to visualize diseases in which a specific enzyme is overexpressed. In this study, aluminum and silicon naphthalocyanines (AlNc and SiNc, respectively) conjugated with matrix metalloprotease-2 (MMP-2)-responsive PLGLAG peptide sequence and poly(ethylene glycol) (PEG) as an axial ligand were designed and synthesized. AlNc-peptide-PEG conjugates AlNc-pep-PEG formed dimeric species interacting with each other through face-to-face H-aggregation in water, while SiNc-based conjugates SiNc-pep-PEG hardly interacted with each other because of the two bulky hydrophilic axial ligands. Both conjugates formed spherical nanometer-sized self-assemblies in water, generating photoacoustic waves under near-infrared photoirradiation. The treatment of MNc-peptide-PEG conjugates (M = Al, Si) with MMP-2 smoothly induced the cleavage of the PLGLAG sequence to release the hydrophilic PEG moiety, resulting in the aggregation of MNcs. By comparing the PA signal intensity changes at 680 and 760 nm, the photoacoustic signal intensity ratios were shown to be enhanced by 3-5 times after incubation with MMP-2. We demonstrated that MNc-peptide-PEG conjugates (M = Al, Si) could work as activatable photoacoustic probes in the in vitro experiment of MMP-2-overexpressed cell line HT-1080 as well as the in vivo photoacoustic imaging of HT-1080-bearing mice.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoto Imaizumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
6
|
Weldon C, Ji T, Nguyen MT, Rwei A, Wang W, Hao Y, Zhao C, Mehta M, Wang BY, Tsui J, Marini RP, Kohane DS. Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia. ACS NANO 2019; 13:18-25. [PMID: 30351910 DOI: 10.1021/acsnano.8b05408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intravenous regional anesthesia (IVRA; Bier block) is commonly used to anesthetize an extremity for surgery. Limitations of the procedure include pain from the required tourniquet, the toxicity that can occur from systemic release of local anesthetics, and the lack of postoperative pain relief. We hypothesized that the nanoencapsulation of the local anesthetic would prolong local anesthesia and enhance safety. Here, we developed an ∼15 nm micellar bupivacaine formulation (M-Bup) and tested it in a rat tail vein IVRA model, in which active agents were restricted in the tail by a tourniquet for 15 min. After tourniquet removal, M-Bup provided local anesthesia for 4.5 h, which was two times longer than that from a larger dose of free bupivacaine. Approximately 100 nm liposomal bupivacaine (L-Bup) with the same drug dose as M-Bup did not cause anesthesia. Blood levels of bupivacaine after tourniquet removal were lower in animals receiving M-Bup than L-Bup or free bupivacaine, demonstrating enhanced safety. Tissue reaction to M-Bup was benign.
Collapse
Affiliation(s)
- Christopher Weldon
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Surgery , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Minh-Thuy Nguyen
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Alina Rwei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Yi Hao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Chao Zhao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Manisha Mehta
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Bruce Y Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jonathan Tsui
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Robert P Marini
- Division of Comparative Medicine , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
7
|
Cheng P, Yang Y, Huang S. Theoretical insights into the interaction between Ru nPt 13-n (n=4, 7 and 9) clusters and [BMIM] + based ionic liquids: Effect of anion. J Mol Graph Model 2017; 74:117-124. [PMID: 28411460 DOI: 10.1016/j.jmgm.2017.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Density functional theory has been performed to systematically study the interactions between RunPt13-n (n=4, 7 and 9) clusters and [BMIM]+ based ionic liquids. Ionic liquids [BMIM][Br], [BMIM][BF4], [BMIM][PF6], [BMIM][CF3SO3], and [BMIM][NTf2] have different effects on the stability of Ru7Pt6. Ionic liquids with median size anions of PF6- and CF3SO3- can better improve the stability of Ru7Pt6 than those with the small anions of Br- and BF4- and large anion of NTf2-. Based on negative relaxation energies, the stabilities of Ru4Pt9, Ru7Pt6, and Ru9Pt4 are all enhanced after interacting with [BMIM][CF3SO3]. The stability enhanced degree is in agreement with the interaction strength. For Ru7Pt6-n{[BMIM][CF3SO3]} (n=1, 2, 3, 4), the interaction between ionic liquid and cluster plays the primary role in stabilizing the cluster in Ru7Pt6-[BMIM][CF3SO3]. With the increase of the number of [BMIM][CF3SO3], the role of the interaction in stabilizing the cluster is getting weaker, while the role of steric protection is getting more important.
Collapse
Affiliation(s)
- Ping Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongpeng Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shiping Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|