1
|
Duong TT, Le ML, Lee C, Kim J. Organic-Inorganic Hybrid Nanoparticles for Enhancing Adhesion of 2K Polyurethane to Steel and Their Performance Optimization Using Response Surface Methodology. Polymers (Basel) 2024; 16:2816. [PMID: 39408527 PMCID: PMC11478698 DOI: 10.3390/polym16192816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Automakers are focusing on lightweight vehicles to address fuel economy and emission challenges and are using high-performance materials such as 2K PU-based joints as alternatives to cast iron, steel, and other metals. This study was conducted with the aim of expanding the application of 2K PU and enhancing its compatibility with steel substrates, which are commonly used in the automotive manufacturing industry, through the use of O-I hybrid nanoparticles containing alkoxysilane groups as additives in the 2K PU formulation. At the same time, the simplified process introduced and examined in this study demonstrates its feasibility for industrial-scale applications; the process offers notable advantages in reducing workload and curing time by eliminating cumbersome surface pretreatment steps before applying the 2K PU layer. Two types of commercial SB PU and EB PU were selected to study the mechanism by which O-I hybrid NPs enhance adhesion when integrated directly into the 2K PU formulation. We optimized various input parameters through practical work and modeling using the response surface method. These parameters included the amounts of AFAP precursor, APTES, and butylene glycol (BG) and the mixing ratio of O-I hybrid NPs in the formulations of two commercial PUs. The results show that O-I hybrid NPs significantly enhance adhesion, increasing performance on stainless surfaces by up to 2.35 times compared to pristine EB and SB PU. Notably, the SB PU's performance can improve up to 2.5 times according to the RSM predictions, highlighting the substantial impact of O-I hybrid NPs.
Collapse
Affiliation(s)
- Thu Thuy Duong
- Nanocomposite Structure Polymer Laboratory, Department of Advanced Materials Engineering, Kangwon National University, Samcheok 25913, Republic of Korea (C.L.)
| | - Manh Linh Le
- Nanocomposite Structure Polymer Laboratory, Department of Advanced Materials Engineering, Kangwon National University, Samcheok 25913, Republic of Korea (C.L.)
- VN-UK Institute for Research and Executive Education, The University of Danang, Danang 550000, Vietnam
| | - Changhoon Lee
- Nanocomposite Structure Polymer Laboratory, Department of Advanced Materials Engineering, Kangwon National University, Samcheok 25913, Republic of Korea (C.L.)
| | - Juyoung Kim
- Nanocomposite Structure Polymer Laboratory, Department of Advanced Materials Engineering, Kangwon National University, Samcheok 25913, Republic of Korea (C.L.)
| |
Collapse
|
2
|
Ma J, Yu M, Huang M, Wu Y, Fu C, Dong L, Zhu Z, Zhang L, Zhang Z, Feng X, Xiang H. Additive Strategy Enhancing In Situ Polymerization Uniformity for High-Voltage Sodium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305649. [PMID: 37752691 DOI: 10.1002/smll.202305649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/28/2023]
Abstract
In situ polymerization to prepare quasi-solid electrolyte has attracted wide attentions for its advantage in achieving intimate electrode-electrolyte contact and the high process compatibility with current liquid batteries; however, gases can be generated during polymerization process and remained in the final electrolyte, severely impairing the electrolyte uniformity and electrochemical performance. In this work, an in situ polymerized poly(vinylene carbonate)-based quasi-solid electrolyte for high-voltage sodium metal batteries (SMBs) is demonstrated, which contains a novel multifunctional additive N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). MSTFA as high-efficient plasticizer diminishes residual gases in electrolyte after polymerization; the softer and homogeneous electrolyte enables much faster ionic conduction. The HF/H2 O scavenge effect of MSTFA mitigates the corrosion of free acid to cathode and interfacial passivating layers, enhancing the cycle stability under high voltage. As a result, the 4.4 V Na||Na3 V2 (PO4 )2 F3 cell employing the optimized electrolyte possesses an initial discharge capacity of 112.0 mAh g-1 and a capacity retention of 91.3% after 100 cycles at 0.5C, obviously better than those of its counterparts without MSTFA addition. This work gives a pioneering study on the gas residue phenomenon in in situ polymerized electrolytes, and introduces a novel multifunctional silane additive that effectively enhances electrochemical performance in high-voltage SMBs, showing practical application significance.
Collapse
Affiliation(s)
- Jian Ma
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Mengyue Yu
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Minghao Huang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yueyue Wu
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chengyu Fu
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Lei Dong
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhendong Zhu
- Hefei Gotion High-Tech Power Energy Co., Ltd, Hefei, Anhui, 230012, P. R. China
| | - Le Zhang
- Hefei Gotion High-Tech Power Energy Co., Ltd, Hefei, Anhui, 230012, P. R. China
| | - Zheng Zhang
- Hefei Gotion High-Tech Power Energy Co., Ltd, Hefei, Anhui, 230012, P. R. China
| | - Xuyong Feng
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
3
|
Bahrami S, Mirzadeh H, Solouk A, Duprez D. Bioinspired scaffolds based on aligned polyurethane nanofibers mimic tendon and ligament fascicles. Biotechnol J 2023; 18:e2300117. [PMID: 37440460 DOI: 10.1002/biot.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Topographical factors of scaffolds play an important role in regulating cell functions. Although the effects of alignment topography and three-dimensional (3D) configuration of nanofibers as well as surface stiffness on cell behavior have been investigated, there are relatively few reports that attempt to understand the relationship between synergistic effects of these parameters and cell responses. Herein, the influence of biophysical and biomechanical cues of electrospun polyurethane (PU) scaffolds on mesenchymal stem cells (MSCs) activities was evaluated. To this aim, multiscale bundles were developed by rolling up the aligned electrospun mats mimicking the fascicles of tendons/ligaments and other similar tissues. Compared to mats, the 3D bundles not only maintained the desirable topographical features (i.e., fiber diameter, fiber orientation, and pore size), but also boosted tensile strength (∼40 MPa), tensile strain (∼260%), and surface stiffness (∼1.75 MPa). Alignment topography of nanofibers noticeably dictated cell elongation and a uniaxial orientation, resulting in tenogenic commitment of MSCs. MSCs seeded on the bundles expressed higher levels of tenogenic markers compared to mats. Moreover, the biomimetic bundle scaffolds improved synthesis of extracellular matrix components compared to mats. These results suggest that biophysical and biomechanical cues modulate cell-scaffold interactions, providing new insights into hierarchical scaffold design for further studies.
Collapse
Affiliation(s)
- Saeid Bahrami
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Institut Biologie Paris Seine-Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique (CNRS) UMR 7622, Institut National de la Santé Et de la Recherche Médicale (Inserm) U1156, Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Hamid Mirzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Delphine Duprez
- Institut Biologie Paris Seine-Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique (CNRS) UMR 7622, Institut National de la Santé Et de la Recherche Médicale (Inserm) U1156, Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Ma DX, Yang Y, Yin GZ, Vázquez-López A, Jiang Y, Wang N, Wang DY. ZIF-67 In Situ Grown on Attapulgite: A Flame Retardant Synergist for Ethylene Vinyl Acetate/Magnesium Hydroxide Composites. Polymers (Basel) 2022; 14:4408. [PMID: 36297987 PMCID: PMC9608850 DOI: 10.3390/polym14204408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
ZIF-67@ATP was prepared by the in situ growth of the zeolite imidazole frame (ZIF-67) on the surface of attapulgite (ATP). The structure and surface morphology of ZIF-67@ATP were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Different mass fractions of ATP and ZIF-67@ATP were added to ethylene vinyl acetate (EVA)/magnesium hydroxide (MH) composites as flame retardant synergists. The flame retardancy of EVA composites was evaluated by the limiting oxygen index (LOI) test, UL-94 test and cone calorimeter test. Composites containing 3 wt% of ZIF-67@ATP reached an LOI value of 43% and a V-0 rating in the UL-94 test, and the ignition time of the composite increased from 38 s to 56 s. The tensile strength and impact strength of the composites did not change significantly, but the elongation at break increased greatly. Typically, for composites containing 4 wt% of ZIF-67@ATP, the elongation at break of the composites increased from 69.5% to 522.2% compared to the samples without the synergist. This study provides novel insights into the application of attapulgite in the field of flame retardant polymer materials.
Collapse
Affiliation(s)
- De-Xin Ma
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuan Yang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guang-Zhong Yin
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, 28223 Madrid, Spain
| | | | - Yan Jiang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - De-Yi Wang
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, 28223 Madrid, Spain
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| |
Collapse
|
5
|
Molecular Compatibility and Hydrogen Bonding Mechanism of PES/PEI Blends. Polymers (Basel) 2022; 14:polym14153046. [PMID: 35956562 PMCID: PMC9370605 DOI: 10.3390/polym14153046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
The development of high-performance polymer membranes has sparked a lot of attention in recent years. Polymer blending is a potential method of modification. A limitation, however, is the compatibility of blends at the molecular level. In this investigation, polyethersulfone/polyetherimide hollow fiber membranes were prepared by the solution blending method. Compatibility, hydrogen bonding, crystallinity, microstructure, hydrophilicity, mechanical properties, and transmissibility of blended membranes were also characterized. The compatibility and hydrogen bonding action of the two components were confirmed by DSC, FTIR, XPS, and XRD. The structure exhibits a C−H···O interaction motif with the sulfone group acting as a hydrogen bond acceptor from a methyl C−H donor. The π–π stacking between the two polymers arranged molecules more orderly, resulting in enhanced intermolecular interactions. Compared to polyethersulfone hollow fiber membranes, the hydrophilic, mechanical properties, and rejection rate of the blended membranes are more effectively enhanced. Self-assembly of the host polymer with a polymer capable of forming hydrogen bonds to construct controllable blends is a crucial and proven method.
Collapse
|
6
|
Ruan Y, Li N, Liu C, Chen L, Zhang S, Wang Z. Increasing heat transfer performance of thermoplastic polyurethane by constructing thermal conduction channels of ultra-thin boron nitride nanosheets and carbon nanotubes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04215c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The TPU-based thermally conductive composite reaches a thermal conductivity of 1.35 W m−1 K−1 and increases the tensile strength by at least 300%.
Collapse
Affiliation(s)
- Yue Ruan
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry, University of Science and Technology of China
- Hefei
| | - Nian Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Key Laboratory of Photovoltaic and Energy Conservation Materials
- Hefei Institutes of Physical Science
| | - Cui Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Key Laboratory of Photovoltaic and Energy Conservation Materials
- Hefei Institutes of Physical Science
| | - Liqing Chen
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry, University of Science and Technology of China
- Hefei
| | - Shudong Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Key Laboratory of Photovoltaic and Energy Conservation Materials
- Hefei Institutes of Physical Science
| | - Zhenyang Wang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Key Laboratory of Photovoltaic and Energy Conservation Materials
- Hefei Institutes of Physical Science
| |
Collapse
|
7
|
Fei T, Li Y, Liu B, Xia C. Flexible polyurethane/boron nitride composites with enhanced thermal conductivity. HIGH PERFORM POLYM 2019. [DOI: 10.1177/0954008319862044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Polymer-based composites with high thermal conductivity have great potential application as thermal management materials. This study was devoted to improving the thermal conductivity of the flexible thermoplastic polyurethane (TPU) by employing boron nitride (BN) as heat filler. We prepared flexible and thermally conductive TPU/BN composite via solution mixing and hot pressing. The thermal conductivity of the TPU/BN composite with 50 wt% BN (32.6 vol%) reaches 3.06 W/m·K, approximately 1290% enhancement compared to that of pure TPU (0.22 W/m·K). In addition, the thermal conductivity of our flexible TPU/BN composite with 30 wt% BN is almost not varied (a decrease of only 2.5%) after 100 cycles of mechanical bending, which indicates the high stability of heat conduction of our flexible TPU/BN composite under mechanical bending. The maximum tensile strength of the TPU/BN composite with 5 wt% BN is 48.9 MPa, 14% higher than that of pure TPU (43.2 MPa). Our flexible and highly thermally conductive TPU/BN composites show promise for heat dissipation in various applications in the electronics field.
Collapse
Affiliation(s)
- Ting Fei
- College of Material Science and Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Yanbao Li
- College of Material Science and Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Baocheng Liu
- College of Material Science and Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Chengbo Xia
- College of Material Science and Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
Li Y, Zhu Z, Wang X. Synthesis and thermal properties of organically modified palygorskite/fluorinated polyurethane nanocomposites. J Appl Polym Sci 2017. [DOI: 10.1002/app.45460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Li
- School of Material Science & Engineering; University of Shanghai for Science and Technology; Shanghai 200093 P. R. China
| | - Zhiqiang Zhu
- School of Material Science & Engineering; University of Shanghai for Science and Technology; Shanghai 200093 P. R. China
| | - Xia Wang
- School of Material Science & Engineering; University of Shanghai for Science and Technology; Shanghai 200093 P. R. China
| |
Collapse
|
9
|
Mu X, Zhan J, Feng X, Yuan B, Qiu S, Song L, Hu Y. Novel Melamine/o-Phthalaldehyde Covalent Organic Frameworks Nanosheets: Enhancement Flame Retardant and Mechanical Performances of Thermoplastic Polyurethanes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23017-23026. [PMID: 28636316 DOI: 10.1021/acsami.7b06422] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Covalent organic frameworks (COFs) nanosheets prepared from condensation reaction between melamine and o-phthalaldehyde are first prepared through ball milling and then incorporated into thermoplastic polyurethanes (TPU) by solution mixing. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectrometer are applied to characterize COFs nanosheets. It is observed apparently from TEM image that COFs nanosheets are obtained. Successful preparation of COFs nanosheets is proved further by vanishment of typical diffraction peak of COFs at around 23.5° in COFs nanosheets XRD pattern, appearance of quadrant and semicircle stretching of the s-triazine ring at 1568 and 1469 cm-1 in FTIR spectra and N═C bond at 389.5 eV in N1s high-resolution XPS spectra of COFs nanosheets. The thermal property, combustion behavior and mechanical performance of TPU naoncomposites are also investigated. Incorporation of COFs nanosheets into TPU contributes to char forming of TPU under nitrogen atmosphere and 14.3% decrease of peak heat release rate of TPU. Besides, the elongation at break, Young's modulus, and fracture strength of TPU nanocomposites increase sharply compared with that of neat one.
Collapse
Affiliation(s)
- Xiaowei Mu
- State Key Laboratory of Fire Science, University of Science and Technology of China , Hefei 230026, China
| | - Jing Zhan
- School of Civil Engineering and Environmental Engineering, Anhui Xinhua University , Hefei, Anhui 230088, China
| | - Xiaming Feng
- State Key Laboratory of Fire Science, University of Science and Technology of China , Hefei 230026, China
| | - Bihe Yuan
- School of Resources and Environmental Engineering, Wuhan University of Technology , Wuhan 430070, China
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China , Hefei 230026, China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China , Hefei 230026, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China , Hefei 230026, China
| |
Collapse
|
10
|
Fabrication, characterization and properties of waterborne polyurethane/3-aminopropyltriethoxysilane/multiwalled carbon nanotube nanocomposites via copolycondensation of hydroxyls. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1859-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|